Management and Effects of Coalbed Methane Produced Water in the Western United States


Book Description

In some coalbeds, naturally occurring water pressure holds methane-the main component of natural gas-fixed to coal surfaces and within the coal. In a coalbed methane (CBM) well, pumping water from the coalbeds lowers this pressure, facilitating the release of methane from the coal for extraction and use as an energy source. Water pumped from coalbeds during this process-CBM 'produced water'-is managed through some combination of treatment, disposal, storage, or use, subject to compliance with federal and state regulations. CBM produced water management can be challenging for regulatory agencies, CBM well operators, water treatment companies, policy makers, landowners, and the public because of differences in the quality and quantity of produced water; available infrastructure; costs to treat, store, and transport produced water; and states' legal consideration of water and produced water. Some states consider produced water as waste, whereas others consider it a beneficial byproduct of methane production. Thus, although current technologies allow CBM produced water to be treated to any desired water quality, the majority of CBM produced water is presently being disposed of at least cost rather than put to beneficial use. This book specifically examines the Powder River, San Juan, Raton, Piceance, and Uinta CBM basins in the states of Montana, Wyoming, Colorado, New Mexico, and Utah. The conclusions and recommendations identify gaps in data and information, potential beneficial uses of CBM produced water and associated costs, and challenges in the existing regulatory framework.




Chemical Energy from Natural and Synthetic Gas


Book Description

Commercial development of energy from renewables and nuclear is critical to long-term industry and environmental goals. However, it will take time for them to economically compete with existing fossil fuel energy resources and their infrastructures. Gas fuels play an important role during and beyond this transition away from fossil fuel dominance to a balanced approach to fossil, nuclear, and renewable energies. Chemical Energy from Natural and Synthetic Gas illustrates this point by examining the many roles of natural and synthetic gas in the energy and fuel industry, addressing it as both a "transition" and "end game" fuel. The book describes various types of gaseous fuels and how are they are recovered, purified, and converted to liquid fuels and electricity generation and used for other static and mobile applications. It emphasizes methane, syngas, and hydrogen as fuels, although other volatile hydrocarbons are considered. It also covers storage and transportation infrastructure for natural gas and hydrogen and methods and processes for cleaning and reforming synthetic gas. The book also deals applications, such as the use of natural gas in power production in power plants, engines, turbines, and vehicle needs. Presents a unified and collective look at gas in the energy and fuel industry, addressing it as both a "transition" and "end game" fuel. Emphasizes methane, syngas, and hydrogen as fuels. Covers gas storage and transport infrastructure. Discusses thermal gasification, gas reforming, processing, purification and upgrading. Describes biogas and bio-hydrogen production. Deals with the use of natural gas in power production in power plants, engines, turbines, and vehicle needs.




Just Energy Transitions and Coal Bed Methane


Book Description

This book discusses how Coal Bed Methane (CBM) could help the acceleration of the energy transition in a ‘just’ way in Indonesia, due to the country's potential CBM reserves (and current dependence on climate damaging coal). Developing countries face multiple challenges in achieving their energy transitions. CBM in Indonesia could potentially be a catalyst for energy transition and subsequently improve access to energy. However, CBM faces numerous challenges and although Indonesia first developed its domestic CBM sector over more than a decade ago, they are still to implement this successfully. This book exposes the challenges and opportunities of CBM, exploring what lessons other countries could learn from Indonesia to improve the industry with a view to achieving energy transition and climate change targets. This book will be an invaluable reference for researchers and practitioners working in this field.




Coalbed Methane in China


Book Description

The coalbed methane (CBM) reserve in China ranks third in the world with a total resource of 36.8×1012 m3. Exploitation of CBM has an important practical significance to ensure the long-term rapid development of China natural gas industry. Therefore, in 2002, the Ministry of Science and Technology of China set up a national 973 program to study CBM system and resolve problems of CBM exploration and exploitation in China. All the main research results and new insights from the program are presented in this book. The book is divided into 11 chapters. The first chapter mainly introduces the present situation of CBM exploration and development in China and abroad. Chapters 2 through 9 illustrate the geological theory and prospect evaluation methods. Then chapters 10 and 11 discuss CBM recovery mechanisms and technology. The book systematically describes the origin, storage, accumulation and emission of CBM in China, and also proposes new methods and technologies on resource evaluation, prospect prediction, seismic interpretation and enhanced recovery. The book will appeal to geologists, lecturers and students who are involved in the CBM industry and connected with coal and conventional hydrocarbon resources research.







Water Resources Management


Book Description

This book contains two parts. The first part deals with some aspects of irrigation, encompassing farm irrigation systems, landscape gardening, energy assessment for drip irrigation, and micro-sprinklers. The second part is on water resources planning and management. It discusses water crisis, challenges in river health management, water supply systems, salt water intrusion, lake management, water supply demand assessment, integrated water resources management, among other topics. The book will be of interest to researchers and practitioners in the field of water resources, hydrology, environmental resources, agricultural engineering, watershed management, earth sciences, as well as those engaged in natural resources planning and management. Graduate students and those wishing to conduct further research in water and environment and their development and management may find the book to be of value.




Water Quality Impacts of the Energy-Water Nexus


Book Description

Energy and water have been fundamental to powering the global economy and building modern society. This cross-disciplinary book provides an integrated assessment of the different scientific and policy tools around the energy-water nexus. It focuses on how water use, and wastewater and waste solids produced from fossil fuel energy production affect water quality and quantity. Summarizing cutting edge research, it describes the scientific methods for detecting contamination sources in the context of policy and regulations. The authors highlight the growing evidence that fossil fuel production, from both conventional and unconventional sources, leads to water quality degradation, while regulations for the water and energy sector remain fractured and highly variable across and within countries. This volume will be a key reference for scholars, industry professionals, environmental consultants and policy makers seeking information on the risks associated with the energy cycle and its impact on the environment, particularly water resources.




Coal and Coalbed Gas


Book Description

Coal and Coalbed Gas: Future Directions and Opportunities, Second Edition introduces the latest in coal geology research and the engineering of gas extraction. Importantly, the second edition examines how, over the last 10 years, research has both changed focus and where it is conducted. This shift essentially depicts "a tale of two worlds"—one half (Western Europe, North America) moving away from coal and coalbed gas research and production towards cleaner energy resources, and the other half (Asia–Pacific region, Eastern Europe, South America) increasing both research and usage of coal. These changes are marked by a precipitous fall in coalbed gas production in North America; however, at the same time there has been a significant rise in coal and coalbed gas production in Australia, China, and India. The driver for higher production and its associated research is a quest for affordable energy and economic security that a large resource base brings to any country like Australia's first large-scale coalbed gas to liquid natural gas projects supplying the demand for cleaner burning LNG to the Asian-Pacific region. Since the last edition of this book, global climate change policies have more forcibly emphasized the impact of methane from coal mines and placed these emissions equal to, or even more harmful than, CO2 emissions from fossil fuels in general. Governmental policies have prioritized capture, use, and storage of CO2, burning coal in new highly efficient low emission power plants, and gas pre-drainage of coal mines. The Organization for Economic Cooperation and Development (OECD) countries and China are also introducing new research into alternative, non-fuel uses for coal, such as carbon fibers, nanocarbons, graphene, soil amendments, and as an unconventional ore for critical elements. New to this edition: Each chapter is substantially changed from the 1st edition including expanded and new literature citations and reviews, important new data and information, new features and materials, as well as re-organized and re-designed themes. Importantly, three new chapters cover global coal endowment and gas potential, groundwater systems related to coalbed gas production and biogenic gas generation as well as the changing landscape of coal and coalbed gas influenced by global climate change and net-zero carbon greenhouse gas emissions. FOREWORD When I reviewed the first edition of this book, my initial thought was, "Do we need another book on coal geology?" and then I read it and realised, "Yes, we need this book" and my students downloaded copies as soon as it was available. So now we come to 2023, and a lot has happened in the past decade. For a different reason we might ask if we still need this book, or even coal geoscientists and engineers, as the world aims for rapid decarbonisation of the energy sector and a reduction of coal as a feedstock for industrial resources, like steel manufacture.




Coalbed Methane Development in Montana


Book Description




Advanced Reservoir and Production Engineering for Coal Bed Methane


Book Description

Advanced Reservoir and Production Engineering for Coal Bed Methane presents the reader with design systems that will maximize production from worldwide coal bed methane reservoirs. Authored by an expert in the field with more than 40 years of' experience, the author starts with much needed introductory basics on gas content and diffusion of gas in coal, crucial for anyone in the mining and natural gas industries. Going a step further, chapters on hydrofracking, horizontal drilling technology, and production strategies address the challenges of dewatering, low production rates, and high development costs. This book systematically addresses all three zones of production levels, shallow coal, medium depth coal, and deep coal with coverage on gas extraction and production from a depth of 500 feet to upwards of 10,000 feet, strategies which cannot be found in any other reference book. In addition, valuable content on deep coal seams with content on enhanced recovery, a discussion on CO2 flooding, infra-red heating and even in-situ combustion of degassed coal, giving engineers a greater understanding on how today's shale activities can aid in enhancing production of coal bed for future natural gas production. - Delivers how to recover and degas deeper coal seams while lowering development costs - Addresses both sorption process and irreducible fraction of gas in coal, with examples based on the author's 40 plus years of direct experience - Explains how the same techniques used for production from deep shale activity can produce gas from deep coal seems with the help of enhanced recovery, leading to increased gas production