Radio Resource Management in Wireless Networks


Book Description

This book allows readers to gain an in-depth understanding of resource allocation problems in wireless networks and the techniques used to solve them.




Power Control in Wireless Cellular Networks


Book Description

Transmit power in wireless cellular networks is a key degree of freedom in the management of interference, energy, and connectivity. Power control in both the uplink and downlink of a cellular network has been extensively studied, especially over the last 15 years, and some of the results have enabled the continuous evolution and significant impact of the digital cellular technology. This survey provides a comprehensive discussion of the models, algorithms, analysis, and methodologies in this vast and growing literature. It starts with a taxonomy of the wide range of power control problem formulations, and progresses from the basic formulation to more sophisticated ones. When transmit power is the only set of optimization variables, algorithms for fixed SIR are presented first, before turning to their robust versions and joint SIR and power optimization. This is followed by opportunistic and non-cooperative power control. Then joint control of power together with beamforming pattern, base station assignment, spectrum allocation, and transmit schedule is surveyed one-by-one. Throughout the survey, we highlight the use of mathematical language and tools in the study of power control, including optimization theory, control theory, game theory, and linear algebra. Practical implementations of some of the algorithms in operational networks are discussed in the concluding section. As illustrated by the open problems presented at the end of most chapters, in the area of power control in cellular networks, there are still many under-explored directions and unresolved issues that remain theoretically challenging and practically important.




Wireless Communications Systems and Networks


Book Description

Since the early 1990s, the wireless communications field has witnessed explosive growth. The wide range of applications and existing new technologies nowadays stimulated this enormous growth and encouraged wireless applications. The new wireless networks will support heterogeneous traffic, consisting of voice, video, and data (multimedia). This necessitated looking at new wireless generation technologies and enhance its capabilities. This includes new standards, new levels of Quality of Service (QoS), new sets of protocols and architectures, noise reduction, power control, performance enhancement, link and mobility management, nomadic and wireless networks security, and ad-hoc architectures. Many of these topics are covered in this textbook. The aim of this book is research and development in the area of broadband wireless communications and sensor networks. It is intended for researchers that need to learn more and do research on these topics. But, it is assumed that the reader has some background about wireless communications and networking. In addition to background in each of the chapters, an in-depth analysis is presented to help our readers gain more R&D insights in any of these areas. The book is comprised of 22 chapters, written by a group of well-known experts in their respective fields. Many of them have great industrial experience mixed with proper academic background.




Wireless Multimedia Network Technologies


Book Description

This book is a collection of invited papers that were presented at the Ninth IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, September 5-8, 1998, Boston, MA. These papers are meant to provide a global view of the emerging third-generation wireless networks in the wake of the third millennium. Following the tradition of the PIMRC conferences, the papers are selected to strike a balance between the diverse interests of academia and industry by addressing issues of interest to the designers, manufacturers, and service providers involved in the wireless networking industry. The tradition of publishing a collection of the invited papers presented at the PIMRC started in PIMRC’97, Helsinki, Finland. There are two benefits to this tradition (1) it provides a shorter version of the proceedings of the conference that is more focused on a specific theme (2) the papers are comprehensive and are subject of a more careful review process to improve the contents as well as the presentation of the material, making it more appealing for archival as a reference book. The production costs of the book is subsidized by the conference and the editors have donated the royalty income of the book to the conference.




LTE for UMTS


Book Description

From the editors of the highly successful WCDMA for UMTS, this new book gives a complete and up-to-date overview of Long Term Evolution (LTE) in a systematic and clear manner. It starts with an in-depth explanation of the background and standardization process before moving on to examine the system architecture evolution (SAE). The basics of air interface modulation choices are introduced and key subjects such as 3GPP LTE physical layer and protocol solutions are described. Mobility aspects and radio resource management together with radio and end-to-end performance are assessed. The voice solution and voice capacity in LTE are also illustrated. Finally, the main differences between LTE TDD and FDD modes are examined and HSPA evolution in 3GPP Releases 7 and 8 is described. LTE for UMTS is one of the first books to provide a comprehensive guide to the standards and technologies of LTE. Key features of the book include: Covers all the key aspects of LTE in a systematic manner Presents full description of 3GPP Release 8 LTE Examines the expected performance of LTE Written by experts actively involved in the 3GPP standards and product development.




Radio Resource Management in Wireless Networks


Book Description

Do you need to design efficient wireless communications systems? This unique text provides detailed coverage of radio resource allocation problems in wireless networks and the techniques that can be used to solve them. Covering basic principles and mathematical algorithms, and with a particular focus on power control and channel allocation, you will learn how to model, analyze, and optimize the allocation of resources in both physical and data link layers, and for a range of different network types. Both established and emerging networks are considered, including CDMA and OFDMA wireless networks, relay-based wireless networks, and cognitive radio networks. Numerous exercises help you put knowledge into practice, and provide the tools needed to address some of the current research problems in the field. This is an essential reference whether you are a graduate student, researcher or industry professional working in the field of wireless communication networks.




Radio Network Planning and Optimisation for UMTS


Book Description

Radio Network Planning and Optimisation for UMTS, Second Edition, is a comprehensive and fully updated introduction to WCDMA radio access technology used in UMTS, featuring new content on key developments. Written by leading experts at Nokia, the first edition quickly established itself as a best-selling and highly respected book on how to dimension, plan and optimise UMTS networks. This valuable text examines current and future radio network management issues and their impact on network performance as well as the relevant capacity and coverage enhancement methods. In addition to coverage of WCDMA radio access technology used in UMTS, and the planning and optimisation of such a system, the service control and management concept in WCDMA and GPRS networks are also introduced. This is an excellent source of information for those considering future cellular networks where Quality of Service (QoS) is of paramount importance. Key features of the Second Edition include: High-Speed Downlink Packet Access (HSDPA) – physical layer, dimensioning and radio resource management Quality of Service (QoS) mechanisms in network for service differentiation Multiple Input – Multiple Output (MIMO) technology Practical network optimisation examples Service optimisation for UMTS and GPRS/EDGE capacity optimisation The ‘hot topic’ of service control and management in WCDMA and GPRS networks, that has evolved since the first edition Companion website includes: Figures Static radio network simulator implemented in MATLAB® This text will have instant appeal to wireless operators and network and terminal manufacturers. It will also be essential reading for undergraduate and postgraduate students, frequency regulation bodies and all those interested in radio network planning and optimisation, particularly RF network systems engineering professionals.




Fundamentals of Mobile Data Networks


Book Description

This unique text provides a comprehensive and systematic introduction to the theory and practice of mobile data networks. Covering basic design principles as well as analytical tools for network performance evaluation, and with a focus on system-level resource management, you will learn how state-of-the-art network design can enable you flexibly and efficiently to manage and trade-off various resources such as spectrum, energy, and infrastructure investments. Topics covered range from traditional elements such as medium access, cell deployment, capacity, handover, and interference management, to more recent cutting-edge topics such as heterogeneous networks, energy and cost-efficient network design, and a detailed introduction to LTE (4G). Numerous worked examples and exercises illustrate the key theoretical concepts and help you put your knowledge into practice, making this an essential resource whether you are a student, researcher, or practicing engineer.




Radio Resource Management in Multi-Tier Cellular Wireless Networks


Book Description

Providing an extensive overview of the radio resource management problem in femtocell networks, this invaluable book considers both code division multiple access femtocells and orthogonal frequency-division multiple access femtocells. In addition to incorporating current research on this topic, the book also covers technical challenges in femtocell deployment, provides readers with a variety of approaches to resource allocation and a comparison of their effectiveness, explains how to model various networks using Stochastic geometry and shot noise theory, and much more.




Power Control for Multi-Cell Massive MIMO


Book Description

The cellular network operators have witnessed significant growth in data traffic in the past few decades. This growth occurs due to the increases in the number of connected mobile devices, and further, the emerging mobile applications developed for rendering video-based on-demand services. As the frequency bandwidth for cellular communication is limited, significant effort was dedicated to improve the utilization of the available spectrum and increase the system performance via new technologies. For example, 3G and 4G networks were designed to facilitate high data traffic in cellular networks in past decades. Nevertheless, there is a necessity for new cellular network technologies to accommodate the ever-growing data traffic demand. 5G is behind the corner to deal with the tremendous data traffic requirements that will appear in cellular networks in the next decade. Massive MIMO (multiple-input-multi-output) is one of the backbone technologies in 5G networks. Massive MIMO originated from the concept of multi-user MIMO. It consists of base stations (BSs) implemented with a large number of antennas to increase the signal strengths via adaptive beamforming and concurrently serving many users on the same time-frequency blocks. As an outcome of using Massive MIMO technology, there is a notable enhancement of both sum spectral efficiency (SE) and energy efficiency (EE) in comparison with conventional MIMO based cellular networks. Resource allocation is an imperative factor to exploit the specified gains of Massive MIMO. It corresponds to properly allocating resources in the time, frequency, space, and power domains for cellular communication. Power control is one of the resource allocation methods to deliver high spectral and energy efficiency of Massive MIMO networks. Power control refers to a scheme that allocates transmit powers to the data transmitters such that the system maximizes some desirable performance metric. In the first part of this thesis, we investigate reusing the resources of a Massive MIMO system, for direct communication of some specific user pairs known as device-to-device (D2D) underlay communication. D2D underlay can conceivably increase the SE of traditional Massive MIMO systems by enabling more simultaneous transmissions on the same frequencies. Nevertheless, it adds additional mutual interference to the network. Consequently, power control is even more essential in this scenario in comparison with conventional Massive MIMO systems to limit the interference that is caused between the cellular network and the D2D communication, thereby enabling their coexistence. In this part, we propose a novel pilot transmission scheme for D2D users to limit the interference to the channel estimation phase of cellular users in comparison with the case of sharing pilot sequences for cellular and D2D users. We also introduce a novel pilot and data power control scheme for D2D underlaid Massive MIMO systems. This method aims at assuring that D2D communication enhances the SE of the network in comparison with conventional Massive MIMO systems. In the second part of this thesis, we propose a novel power control approach for multi-cell Massive MIMO systems. The new power control approach solves the scalability issue of two well-known power control schemes frequently used in the Massive MIMO literature, which are based on the network-wide max-min and proportional fairness performance metrics. We first explain the scalability issue of these existing approaches. Additionally, we provide mathematical proof for the scalability of our proposed method. Our scheme aims at maximizing the geometric mean of the per-cell max-min SE. To solve this optimization problem, we prove that it can be rewritten in a convex form and then be solved using standard optimization solvers.