Power Electronic Converters for Microgrids


Book Description

As concerns about climate change, energy prices, and energy security loom, regulatory and research communities have shown growing interest in alternative energy sources and their integration into distributed energy systems. However, many of the candidate microgeneration and associated storage systems cannot be readily interfaced to the 50/60 Hz grid. In Power Electronic Converters for Microgrids, Sharkh and Abu-Sara introduce the basics and practical concerns of analyzing and designing such micro-generation grid interface systems. Readers will become familiar with methods for stably feeding the larger grid, importing from the grid to charge on-site storage, disconnecting from the grid in case of grid failure, as well as connect multiple microgrids while sharing their loads appropriately. Sharkh and Abu-Sara introduce not only the larger context of the technology, but also present potential future applications, along with detailed case studies and tutorials to help the reader effectively engineer microgrid systems.




Power Electronic Converters for Microgrids


Book Description

As concerns about climate change, energy prices, and energy security loom, regulatory and research communities have shown growing interest in alternative energy sources and their integration into distributed energy systems. However, many of the candidate microgeneration and associated storage systems cannot be readily interfaced to the 50/60 Hz grid. In Power Electronic Converters for Microgrids, Sharkh and Abu-Sara introduce the basics and practical concerns of analyzing and designing such micro-generation grid interface systems. Readers will become familiar with methods for stably feeding the larger grid, importing from the grid to charge on-site storage, disconnecting from the grid in case of grid failure, as well as connect multiple microgrids while sharing their loads appropriately. Sharkh and Abu-Sara introduce not only the larger context of the technology, but also present potential future applications, along with detailed case studies and tutorials to help the reader effectively engineer microgrid systems.




Modeling and Control of Power Electronic Converters for Microgrid Applications


Book Description

This book covers the fundamentals of power electronic converter modeling and control, digital simulation, and experimental studies in the area of renewable energy systems and AC/DC microgrid. Recent advanced control methods for voltage source inverters (VSIs) and the hierarchical controlled islanded microgrid are discussed, including the mathematical modeling, controller synthesis, parameter selection and multi-scale stability analysis, and consensus-based control strategies for the microgrid and microgrid clusters. The book will be an invaluable technical reference for practicing engineers and researchers working in the areas of renewable energy, power electronics, energy internet, and smart grid. It can also be utilized as reference book for undergraduate and postgraduate students in electrical engineering.




Power Electronic Converter Configuration and Control for DC Microgrid Systems


Book Description

The DC/AC microgrid system is a crucial empowering technology for the integration of various types of renewable energy sources (RES) accompanied by a smart control approach to enhance the system reliability and efficiency. This book presents cutting-edge technology developments and recent investigations performed with the help of power electronics. Large-scale renewable energy integration presents challenges and issues for power grids. In particular, these issues include microgrid adaption to RES, AC machines, the new configuration of AC/DC converters, and electrification of domestic needs with optimal cost expenses from domestic standalone microgrids. Furthermore, this book elaborates cutting-edge developments in electric vehicle fast charging configuration, battery management, and control schemes with renewable energies through hardware-in-loop testing and validation for performance durability in real-time application. Overall, the book covers the diverse field of microgrids, allowing readers to adopt new technologies and prepare for future power demands with sustainable green engineering.




Control of Power Electronic Converters with Microgrid Applications


Book Description

Control of Power Electronic Converters with Microgrid Applications Discover a systematic approach to design controllers for power electronic converters and circuits In Control of Power Electronic Converters with Microgrid Applications, distinguished academics and authors Drs. Arindam Ghosh and Firuz Zare deliver a systematic exploration of design controllers for power electronic converters and circuits. The book offers readers the knowledge necessary to effectively design intelligent control mechanisms. It covers the theoretical requirements, like advanced control theories and the analysis and conditioning of AC signals as well as controller development and control. The authors provide readers with discussions of custom power devices, as well as both DC and AC microgrids. They also discuss the harmonic issues that are crucial in this area, as well as harmonic standardization. The book addresses a widespread lack of understanding in the control philosophy that can lead to a stable operation of converters, with a focus on the application of power electronics to power distribution systems. Readers will also benefit from the inclusion of: A thorough introduction to controller design for different power electronic converter configurations in microgrid systems (both AC and DC) A presentation of emerging technology in power distribution systems to integrate different renewable energy sources Chapters on DC-DC converters and DC microgrids, as well as DC-AC converter modulation techniques and custom power devices, predictive control, and AC microgrids Perfect for manufacturers of power converters, microgrid developers and installers, as well as consultants who work in this area, Control of Power Electronic Converters with Microgrid Applications is also an indispensable reference for graduate students, senior undergraduate students, and researchers seeking a one-stop resource for the design of controllers for power electronic converters and circuits.




Model Predictive Control for Microgrids


Book Description

Model predictive control (MPC) is a method for controlling a process while satisfying a set of constraints. The use of MPC for controlling power systems has been gaining traction in recent years. This work presents the use of MPC for distributed renewable power generation in microgrids.




Microgrid Architectures, Control and Protection Methods


Book Description

This book presents intuitive explanations of the principles of microgrids, including their structure and operation and their applications. It also discusses the latest research on microgrid control and protection technologies and the essentials of microgrids as well as enhanced communication systems. The book provides solutions to microgrid operation and planning issues using various methodologies including planning and modelling; AC and DC hybrid microgrids; energy storage systems in microgrids; and optimal microgrid operational planning. Written by specialists, it is filled in innovative solutions and research related to microgrid operation, making it a valuable resource for those interested in developing updated approaches in electric power analysis, design and operational strategies. Thanks to its in-depth explanations and clear, three-part structure, it is useful for electrical engineering students, researchers and technicians.




Power Electronics for Renewable and Distributed Energy Systems


Book Description

While most books approach power electronics and renewable energy as two separate subjects, Power Electronics for Renewable and Distributed Energy Systems takes an integrative approach; discussing power electronic converters topologies, controls and integration that are specific to the renewable and distributed energy system applications. An overview of power electronic technologies is followed by the introduction of various renewable and distributed energy resources that includes photovoltaics, wind, small hydroelectric, fuel cells, microturbines and variable speed generation. Energy storage systems such as battery and fast response storage systems are discussed along with application-specific examples. After setting forth the fundamentals, the chapters focus on more complex topics such as modular power electronics, microgrids and smart grids for integrating renewable and distributed energy. Emerging topics such as advanced electric vehicles and distributed control paradigm for power system control are discussed in the last two chapters. With contributions from subject matter experts, the diagrams and detailed examples provided in each chapter make Power Electronics for Renewable and Distributed Energy Systems a sourcebook for electrical engineers and consultants working to deploy various renewable and distributed energy systems and can serve as a comprehensive guide for the upper-level undergraduates and graduate students across the globe.




Power Electronics Converters and their Control for Renewable Energy Applications


Book Description

Power Electronics Converters and their Control for Renewable Energy Applications provides information that helps to solve common challenges with power electronics converters, including loss by switching, heating of power switches, management of switching time, improvement of the quality of the signals delivered by power converters, and improvement of the quality of energy produced by renewable energy sources. This book is of interest to academics, researchers, and engineers in renewable energy, power systems, electrical engineering, electronics, and mechanical engineering. Includes important visual illustrations and imagery of concise circuit schematics and renewable energy applications Features a templated approach for step-by-step implementation of the new MPPT algorithm based on recent and intelligent techniques Provides methods for optimal harnessing of energy from renewable energy sources and converter topology synthesis




Modelling and Simulation of Power Electronic Converter Dominated Power Systems in PowerFactory


Book Description

This book provides an overview of power electronic converters for numerical simulations based on DIgSILENT PowerFactory. It covers the working principles, key assumptions and implementation of models of different types of these power systems. The book is divided into three main parts: the first discusses high-voltage direct currents, while the second part examines distribution systems and micro-grids. Lastly, the third addresses the equipment and technologies used in modelling and simulation. Each chapter includes practical examples and exercises, and the accompanying software illustrates essential models, principles and performance using DIgSILENT PowerFactory. Exploring various current topics in the field of modelling power systems, this book will appeal to a variety of readers, ranging from students to practitioners.