Book Description
Special Features: · Power semiconductor devices are viewed from the physics, circuit, modeling and thermal viewpoints for a better understanding of the devices.· AC-DC, DC-DC, DC-AC converters and magnetic devices are treated from both the conceptual and design perspectives.· A separate chapter is included that addresses the analysis and design of linear regulators.· A chapter is included to address the modeling methods to obtain dynamic models of power electronics systems. The method of bond graph is introduced for modeling power electronics systems.· The design of discrete domain controllers in both classical and state space approach are included which addresses the needs of power electronic systems.· Optimal and robust control design methods as applied to power electronics systems are addressed.· Discrete numerical algorithms for digital implementation with respect to power electronics systems are addressed in a separate chapter.· A separate chapter is devoted to the thermal aspects like heat sink sizing for power electronics systems.· Design integration by specifying and designing for reliability with power electronics system examples is another unique feature of this book. · The appendices include the following:o Derivation of the area product for a saturable-core transformer.o Representative list of commonly used core types and their physical parameters.o Representative list of commonly used wire gauges.o Laplace transforms and z-transforms of few time domain signals.o List of specifications for the induction motor used for controller design.o Description of all the object parameters for various electronic components from the reliability prediction viewpoint. Pedagogy includes:o 600+ illustrations and line diagrams.o 480+ descriptive questions.o 440+ objective questions.o 200+ unsolved problems.o 50+ explanatory examples and solved problems.Companion CD contains:· Reliability prediction toolbox· Bond graph simulation toolbox· Several circuit and design examples About The Book: This book on power electronics spans a wide knowledge base such as power devices, drives, circuit topologies, magnetics, system modeling, control configurations, digital processing, thermal and reliability aspects. The book has been broadly divided into two types of topics viz. (a) circuit-oriented aspects and (b) system-oriented aspects. The first seven chapters deal with circuit-oriented aspects of power electronics systems and the remaining chapters deal with system-oriented aspects like controls and reliability.