Power Grid Operation in a Market Environment


Book Description

Covers the latest practices, challenges and theoretical advancements in the domain of balancing economic efficiency and operation risk mitigation This book examines both system operation and market operation perspectives, focusing on the interaction between the two. It incorporates up-to-date field experiences, presents challenges, and summarizes the latest theoretic advancements to address those challenges. The book is divided into four parts. The first part deals with the fundamentals of integrated system and market operations, including market power mitigation, market efficiency evaluation, and the implications of operation practices in energy markets. The second part discusses developing technologies to strengthen the use of the grid in energy markets. System volatility and economic impact introduced by the intermittency of wind and solar generation are also addressed. The third part focuses on stochastic applications, exploring new approaches of handling uncertainty in Security Constrained Unit Commitment (SCUC) as well as the reserves needed for power system operation. The fourth part provides ongoing efforts of utilizing transmission facilities to improve market efficiency, via transmission topology control, transmission switching, transmission outage scheduling, and advanced transmission technologies. Besides the state-of-the-art review and discussion on the domain of balancing economic efficiency and operation risk mitigation, this book: Describes a new approach for mass market demand response management, and introduces new criteria to improve system performance with large scale variable generation additions Reviews mathematic models and solution methods of SCUC to help address challenges posed by increased operational uncertainties with high-penetration of renewable resources Presents a planning framework to account for the value of operational flexibility in transmission planning and to provide market mechanism for risk sharing Power Grid Operations in a Market Environment: Economic Efficiency and Risk Mitigation is a timely reference for power engineers and researchers, electricity market traders and analysts, and market designers.




Transportation and Power Grid in Smart Cities


Book Description

With the increasing worldwide trend in population migration into urban centers, we are beginning to see the emergence of the kinds of mega-cities which were once the stuff of science fiction. It is clear to most urban planners and developers that accommodating the needs of the tens of millions of inhabitants of those megalopolises in an orderly and uninterrupted manner will require the seamless integration of and real-time monitoring and response services for public utilities and transportation systems. Part speculative look into the future of the world’s urban centers, part technical blueprint, this visionary book helps lay the groundwork for the communication networks and services on which tomorrow’s “smart cities” will run. Written by a uniquely well-qualified author team, this book provides detailed insights into the technical requirements for the wireless sensor and actuator networks required to make smart cities a reality.




Advances in Energy, Environment and Chemical Engineering Volume 1


Book Description

Advances in Energy, Environment and Chemical Engineering collects papers resulting from the conference on Energy, Environment and Chemical Engineering (AEECE 2022), Dali, China, 24-26 June, 2022. The primary goal is to promote research and developmental activities in energy technology, environment engineering and chemical engineering. Moreover, it aims to promote scientific information interchange between scholars from the top universities, business associations, research centers and high-tech enterprises working all around the world. The conference conducts in-depth exchanges and discussions on relevant topics such as energy engineering, environment technology and advanced chemical technology, aiming to provide an academic and technical communication platform for scholars and engineers engaged in scientific research and engineering practice in the field of saving technologies, environmental chemistry, clean production and so on. By sharing the research status of scientific research achievements and cutting-edge technologies, it helps scholars and engineers all over the world comprehend the academic development trend and broaden research ideas. So as to strengthen international academic research, academic topics exchange and discussion, and promote the industrialization cooperation of academic achievements.




Power Electronics in Renewable Energy Systems and Smart Grid


Book Description

The comprehensive and authoritative guide to power electronics in renewable energy systems Power electronics plays a significant role in modern industrial automation and high- efficiency energy systems. With contributions from an international group of noted experts, Power Electronics in Renewable Energy Systems and Smart Grid: Technology and Applications offers a comprehensive review of the technology and applications of power electronics in renewable energy systems and smart grids. The authors cover information on a variety of energy systems including wind, solar, ocean, and geothermal energy systems as well as fuel cell systems and bulk energy storage systems. They also examine smart grid elements, modeling, simulation, control, and AI applications. The book's twelve chapters offer an application-oriented and tutorial viewpoint and also contain technology status review. In addition, the book contains illustrative examples of applications and discussions of future perspectives. This important resource: Includes descriptions of power semiconductor devices, two level and multilevel converters, HVDC systems, FACTS, and more Offers discussions on various energy systems such as wind, solar, ocean, and geothermal energy systems, and also fuel cell systems and bulk energy storage systems Explores smart grid elements, modeling, simulation, control, and AI applications Contains state-of-the-art technologies and future perspectives Provides the expertise of international authorities in the field Written for graduate students, professors in power electronics, and industry engineers, Power Electronics in Renewable Energy Systems and Smart Grid: Technology and Applications offers an up-to-date guide to technology and applications of a wide-range of power electronics in energy systems and smart grids.




Design, Control, and Operation of Microgrids in Smart Grids


Book Description

This book offers a wide-ranging overview of advancements, techniques, and challenges related to the design, control, and operation of microgrids and their role in smart grid infrastructure. It brings together an authoritative group of specialists who approach the subject from a number of different viewpoints in the electric power industry, including electricity distribution companies, aggregators, power market retailers, and power generation companies. Design, Control, and Operation of Microgrids in Smart Grids is an authoritative resource for students, researchers, and professionals working with power and energy systems.




Energy Processing and Smart Grid


Book Description

The first book in the field to incorporate fundamentals of energy systems and their applications to smart grid, along with advanced topics in modeling and control This book provides an overview of how multiple sources and loads are connected via power electronic devices. Issues of storage technologies are discussed, and a comparison summary is given to facilitate the design and selection of storage types. The need for real-time measurement and controls are pertinent in future grid, and this book dedicates several chapters to real-time measurements such as PMU, smart meters, communication scheme, and protocol and standards for processing and controls of energy options. Organized into nine sections, Energy Processing for the Smart Grid gives an introduction to the energy processing concepts/topics needed by students in electrical engineering or non-electrical engineering who need to work in areas of future grid development. It covers such modern topics as renewable energy, storage technologies, inverter and converter, power electronics, and metering and control for microgrid systems. In addition, this text: Provides the interface between the classical machines courses with current trends in energy processing and smart grid Details an understanding of three-phase networks, which is needed to determine voltages, currents, and power from source to sink under different load models and network configurations Introduces different energy sources including renewable and non-renewable energy resources with appropriate modeling characteristics and performance measures Covers the conversion and processing of these resources to meet different DC and AC load requirements Provides an overview and a case study of how multiple sources and loads are connected via power electronic devices Benefits most policy makers, students and manufacturing and practicing engineers, given the new trends in energy revolution and the desire to reduce carbon output Energy Processing for the Smart Grid is a helpful text for undergraduates and first year graduate students in a typical engineering program who have already taken network analysis and electromagnetic courses.




Smart Grids


Book Description

The latest edition features a new chapter on implementation and operation of an integrated smart grid with updates to multiple chapters throughout the text. New sections on Internet of things, and how they relate to smart grids and smart cities, have also been added to the book. It describes the impetus for change in the electric utility industry and discusses the business drivers, benefits, and market outlook of the smart grid initiative. The book identifies the technical framework of enabling technologies and smart solutions and describes the role of technology developments and coordinated standards in smart grid, including various initiatives and organizations helping to drive the smart grid effort. With chapters written by leading experts in the field, the text explains how to plan, integrate, implement, and operate a smart grid.




Power System Protection


Book Description

An all-in-one resource on power system protection fundamentals, practices, and applications Made up of an assembly of electrical components, power system protections are a critical piece of the electric power system. Despite its central importance to the safe operation of the power grid, the information available on the topic is limited in scope and detail. In Power System Protection: Fundamentals and Applications, a team of renowned engineers delivers an authoritative and robust overview of power system protection ideal for new and early-career engineers and technologists. The book offers device- and manufacturer-agnostic fundamentals using an accessible balance of theory and practical application. It offers a wealth of examples and easy-to-grasp illustrations to aid the reader in understanding and retaining the information provided within. In addition to providing a wealth of information on power system protection applications for generation, transmission, and distribution facilities, the book offers readers: A thorough introduction to power system protection, including why it's required and foundational definitions Comprehensive explorations of basic power system protection components, including instrument transformers, terminations, telecommunications, and more Practical discussions of basic types of protection relays and their operation, including overcurrent, differential, and distance relays In-depth examinations of breaker failure protection and automatic reclosing, including typical breaker failure tripping zones, logic paths, pedestal breakers, and more Perfect for system planning engineers, system operators, and power system equipment specifiers, Power System Protection: Fundamentals and Applications will also earn a place in the libraries of design and field engineers and technologists, as well as students and scholars of power-system protection.




Design of Smart Power Grid Renewable Energy Systems


Book Description

Provides a systems approach to sustainable green energy production and contains analytical tools to aid in the design of renewable microgrids This book discusses the fundamental concepts of power grid integration on microgrids of green energy sources. In each chapter, the author presents a key engineering problem, and then formulates a mathematical model of the problem followed by a simulation testbed in MATLAB, highlighting solution steps. The book builds its foundation on design of distributed generating system, and design of PV generating plants by introducing design- efficient smart residential PV microgrids. These include energy monitoring systems, smart devices, building load estimation, load classification, and real-time pricing. The book presents basic concepts of phasor systems, three-phase systems, transformers, loads, DC/DC converters, DC/AC inverters, and AC/DC rectifiers, which are all integrated into the design of microgrids for renewable energy as part of bulk interconnected power grids. Other topics of discussion include the Newton formulation of power flow, the Newton—Raphson solution of a power flow problem, the fast decoupled solution for power flow studies, and short circuit calculations. Focuses on the utilization of DC/AC inverters as a three-terminal element of power systems for the integration of renewable energy sources Presents basic concepts of phasor systems, three-phase systems, transformers, loads, DC/DC converters, DC/AC inverters, and AC/DC rectifiers Contains problems at the end of each chapter Supplementary material includes a solutions manual and PowerPoint presentations for instructors Design of Smart Power Grid Renewable Energy Systems, Second Edition is a textbook for undergraduate and graduate students in electric power systems engineering, researchers, and industry professionals. ALI KEYHANI, Ph.D., is a Professor in the Department of Electrical and Computer Engineering at The Ohio State University. He is a Fellow of the IEEE and a recipient of The Ohio State University, College of Engineering Research Award for 1989, 1999, and 2003. He has worked for Columbus and Southern Electric Power Company, Hewlett-Packard Co., Foster Wheeler Engineering, and TRW. He has performed research and consulting for American Electric Power, TRW Control, Liebert, Delphi Automotive Systems, General Electric, General Motors, and Ford. Dr. Keyhani has authored many articles in IEEE Transactions in energy conversion, power electronics, and power systems engineering.




Probabilistic Power System Expansion Planning with Renewable Energy Resources and Energy Storage Systems


Book Description

Probabilistic Power System Expansion Planning with Renewable Energy Resources and Energy Storage Systems Discover how modern techniques have shaped complex power system expansion planning with this one-stop resource from two experts in the field Probabilistic Power System Expansion Planning with Renewable Energy Resources and Energy Storage Systems delivers a comprehensive collection of innovative approaches to the probabilistic planning of generation and transmission systems under uncertainties. The book includes renewables and energy storage calculations when using probabilistic and deterministic reliability techniques to assess system performance from a long-term expansion planning viewpoint. Divided into two sections, the book first covers topics related to Generation Expansion Planning, with chapters on cost assessment, methodology and optimization, and more. The second and final section provides information on Transmission System Expansion Planning, with chapters on reliability constraints, probabilistic production cost simulation, and more. Probabilistic Power System Expansion Planning compares the optimization and methodology across dynamic, linear, and integer programming and explores the branch and bound algorithm. Along with case studies to demonstrate how the techniques described within have been applied in complex power system expansion planning problems, readers will enjoy: A thorough discussion of generation expansion planning, including cost assessment, methodology and optimization, and probabilistic production cost An exploration of transmission system expansion planning, including the branch and bound algorithm, probabilistic production cost simulation for TEP, and TEP with reliability constraints An examination of fuzzy decision making applied to transmission system expansion planning A treatment of probabilistic reliability-based grid expansion planning of power systems including wind turbine generators Perfect for power and energy systems designers, planners, operators, consultants, practicing engineers, software developers, and researchers, Probabilistic Power System Expansion Planning with Renewable Energy Resources and Energy Storage Systems will also earn a place in the libraries of practicing engineers who regularly deal with optimization problems.