Power Grids with Renewable Energy


Book Description

Generation of electricity from renewable sources has become a necessity, particularly due to environmental concerns. In order for renewable sources to provide reliable power, their sporadic availability under certain conditions and the lack of control over the resource must be addressed. Different renewable energy sources and storage technologies bring various properties to the table, and power systems must be adapted and constructed to accommodate these. Power electronics and micro-grids play key roles in enabling the use of renewable energy in the evolving smarter grids.




Design of Smart Power Grid Renewable Energy Systems


Book Description

The Updated Third Edition Provides a Systems Approach to Sustainable Green Energy Production and Contains Analytical Tools for the Design of Renewable Microgrids The revised third edition of Design of Smart Power Grid Renewable Energy Systems integrates three areas of electrical engineering: power systems, power electronics, and electric energy conversion systems. The book also addresses the fundamental design of wind and photovoltaic (PV) energy microgrids as part of smart-bulk power-grid systems. In order to demystify the complexity of the integrated approach, the author first presents the basic concepts, and then explores a simulation test bed in MATLAB® in order to use these concepts to solve a basic problem in the development of smart grid energy system. Each chapter offers a problem of integration and describes why it is important. Then the mathematical model of the problem is formulated, and the solution steps are outlined. This step is followed by developing a MATLAB® simulation test bed. This important book: Reviews the basic principles underlying power systems Explores topics including: AC/DC rectifiers, DC/AC inverters, DC/DC converters, and pulse width modulation (PWM) methods Describes the fundamental concepts in the design and operation of smart grid power grids Supplementary material includes a solutions manual and PowerPoint presentations for instructors Written for undergraduate and graduate students in electric power systems engineering, researchers, and industry professionals, the revised third edition of Design of Smart Power Grid Renewable Energy Systems is a guide to the fundamental concepts of power grid integration on microgrids of green energy sources.




Renewable Energy Integration


Book Description

Renewable Energy Integration is a ground-breaking new resource - the first to offer a distilled examination of the intricacies of integrating renewables into the power grid and electricity markets. It offers informed perspectives from internationally renowned experts on the challenges to be met and solutions based on demonstrated best practices developed by operators around the world. The book's focus on practical implementation of strategies provides real-world context for theoretical underpinnings and the development of supporting policy frameworks. The book considers a myriad of wind, solar, wave and tidal integration issues, thus ensuring that grid operators with low or high penetration of renewable generation can leverage the victories achieved by their peers. Renewable Energy Integration highlights, carefully explains, and illustrates the benefits of advanced technologies and systems for coping with variability, uncertainty, and flexibility. Lays out the key issues around the integration of renewables into power grids and markets, from the intricacies of operational and planning considerations, to supporting regulatory and policy frameworks Provides global case studies that highlight the challenges of renewables integration and present field-tested solutions Illustrates enabling and disruptive technologies to support the management of variability, uncertainty and flexibility




Integration of Renewable Energy Sources Into the Power Grid Through PowerFactory


Book Description

This book evaluates a number of serious technical challenges related to the integration of renewable energy sources into the power grid using the DIgSILENT PowerFactory power system simulation software package. It provides a fresh perspective on analyzing power systems according to renewable energy sources and how they affect power system performance in various situations. The book examines load flow, short-circuit, RMS simulation, power quality, and system reliability in the presence of renewable energy sources, and presents readers with the tools needed for modeling, simulation, and analysis for network planning. The book is a valuable resource for researchers, engineers, and students working to solve power system problems in the presence of renewable energy sources in power system operations and utilities.




Renewable Electricity and the Grid


Book Description

Integrating intermittent renewable energy sources like wind into electricity systems must be one of the most misunderstood issues in energy policy. This edited volume brings together a unique series of authoritative articles on the topic. There should be no excuse for misunderstanding from now on. JIM SKEA, RESEARCH DIRECTOR, UK ENERGY RESEARCH CENTRE The future design and operation of electric power systems with large injections of renewable energy generation is the subject of much debate, and some misunderstanding. This timely book, from a number of authors with expertise in the area, makes an important contribution to our understanding of this topic. NICK JENKINS, PROFESSOR OF ENERGY SYSTEMS, UNIVERSITY OF MANCHESTER We know the future will be different from the past. This book predicts how large proportions of renewable energy can be incorporated into electricity grids, without harm from the natural variability of these supplies. The chapter authors have different approaches and vision, yet the overall message is positive. Not only can we move to dominant use of renewable electricity, but we can do so utilizing many technological and efficiency improvements, with consumers benefiting from clean electricity at acceptable cost. PROFESSOR JOHN TWIDELL, GENERAL EDITOR, WIND ENGINEERING 'Anyone interested in renewable electricity will find this book an important reference. It answers many of teh questions so often raised in public debates' Sherkin Comment Can renewable energy provide reliable power? Will it need extensive backup? The energy available from wind, waves, tides and the sun varies in ways that may not match variations in energy demand. Assimilating these fluctuations can affect the operation and economics of electricity networks, markets and the output of other forms of generation. Is this a significant problem, or can these new sources be integrated into the grid system without the need for extensive backup or energy storage capacity? This book examines the significance of the issue of variability of renewable electricity supplies, and presents technical and operational solutions to the problem of reconciling the differing patterns of supply and demand. Its chapters are authored by leading experts in the field, who aim to explain and quantify the impacts of variability in renewable energy, and in doing so, dispel many of the myths and misunderstandings surrounding the topic.




Superpower


Book Description

Meet Michael Skelly, the man boldly harnessing wind energy that could power America’s future and break its fossil fuel dependence in this “essential, compelling look into the future of the nation’s power grid” (Bryan Burrough, author of The Big Rich). The United States is in the midst of an energy transition. We have fallen out of love with dirty fossil fuels and want to embrace renewable energy sources like wind and solar. A transition from a North American power grid that is powered mostly by fossil fuels to one that is predominantly clean is feasible, but it would require a massive building spree—wind turbines, solar panels, wires, and billions of dollars would be needed. Enter Michael Skelly, an infrastructure builder who began working on wind energy in 2000 when many considered the industry a joke. Eight years later, Skelly helped build the second largest wind power company in the United States—and sold it for $2 billion. Wind energy was no longer funny—it was well on its way to powering more than 6% of electricity in the United States. Award-winning journalist, Russel Gold tells Skelly’s story, which in many ways is the story of our nation’s evolving relationship with renewable energy. Gold illustrates how Skelly’s company, Clean Line Energy, conceived the idea for a new power grid that would allow sunlight where abundant to light up homes in the cloudy states thousands of miles away, and take wind from the Great Plains to keep air conditioners running in Atlanta. Thrilling, provocative, and important, Superpower is a fascinating look at America’s future.




Large Scale Grid Integration of Renewable Energy Sources


Book Description

This book presents comprehensive coverage of the means to integrate renewable power, namely wind and solar power. It looks at new approaches to meet the challenges, such as increasing interconnection capacity among geographical areas, hybridisation of different distributed energy resources and building up demand response capabilities.




Renewable Energy in Power Systems


Book Description

An up to date account of renewable sources of electricity generation and their integration into power systems With the growth in installed capacity of renewable energy (RE) generation, many countries such as the UK are relying on higher levels of RE generation to meet targets for reduced greenhouse gas emissions. In the face of this, the integration issue is now of increasing concern, in particular to system operators. This updated text describes the individual renewable technologies and their power generation characteristics alongside an expanded introduction to power systems and the challenges posed by high levels of penetrations from such technologies, together with an account of technologies and changes to system operation that can ease RE integration. Features of this edition: Covers power conditioning, the characteristics of RE generators, with emphasis on their time varying nature, and the use of power electronics in interfacing RE sources to grids Outlines up to date RE integration issues such as power flow in networks supplied from a combination of conventional and renewable energy sources Updated coverage of the economics of power generation and the role of markets in delivering investment in sustainable solutions Considers the challenge of maintaining power balance in a system with increasing RE input, including recent moves toward power system frequency support from RE sources Offers an insightful perspective on the shape of future power systems including offshore networks and demand side management Includes worked examples that enhance this edition’s suitability as a textbook for introductory courses in RE systems technology Firmly established as an essential reference, the Second Edition of Renewable Energy in Power Systems will prove a real asset to engineers and others involved in both the traditional power and fast growing renewables sector. This text should also be of particular benefit to students of electrical power engineering and will additionally appeal to non-specialists through the inclusion of background material covering the basics of electricity generation.




Electric Renewable Energy Systems


Book Description

This derivative volume stemming from content included in our seminal Power Electronics Handbook takes its chapters related to renewables and establishes them at the core of a new volume dedicated to the increasingly pivotal and as yet under-published intersection of Power Electronics and Alternative Energy. While this re-versioning provides a corollary revenue stream to better leverage our core handbook asset, it does more than simply re-package existing content. Each chapter will be significantly updated and expanded by more than 50%, and all new introductory and summary chapters will be added to contextualize and tie the volume together. Therefore, unlike traditional derivative volumes, we will be able to offer new and updated material to the market and include this largely original content in our ScienceDirect Energy collection. Due to the inherently multi-disciplinary nature of renewables, many engineers come from backgrounds in Physics, Materials, or Chemical Engineering, and therefore do not have experience working in-depth with electronics. As more and more alternative and distributed energy systems require grid hook-ups and on-site storage, a working knowledge of batteries, inverters and other power electronics components becomes requisite. Further, as renewables enjoy broadening commercial implementation, power electronics professionals are interested to learn of the challenges and strategies particular to applications in alternative energy. This book will bring each group up-to-speed with the primary issues of importance at this technological node. This content clarifies the juncture of two key coverage areas for our Energy portfolio: alternative sources and power systems. It serves to bridge the information in our power engineering and renewable energy lists, supporting the growing grid cluster in the former and adding key information on practical implementation to the latter. Provides a thorough overview of the key technologies, methods and challenges for implementing power electronics in alternative energy systems for optimal power generation Includes hard-to-find information on how to apply converters, inverters, batteries, controllers and more for stand-alone and grid-connected systems Covers wind and solar applications, as well as ocean and geothermal energy, hybrid systems and fuel cells




Transforming the Grid Towards Fully Renewable Energy


Book Description

The transformation of the electricity sector is highly complex, including integration of large shares of renewables, storage, forecasting and modelling, biofuels, and electricity markets. This book provides clarity on the interlinked processes of the transformation towards 100 percent renewable power.