Infinite Powers


Book Description

This is the captivating story of mathematics' greatest ever idea: calculus. Without it, there would be no computers, no microwave ovens, no GPS, and no space travel. But before it gave modern man almost infinite powers, calculus was behind centuries of controversy, competition, and even death. Taking us on a thrilling journey through three millennia, professor Steven Strogatz charts the development of this seminal achievement from the days of Aristotle to today's million-dollar reward that awaits whoever cracks Reimann's hypothesis. Filled with idiosyncratic characters from Pythagoras to Euler, Infinite Powers is a compelling human drama that reveals the legacy of calculus on nearly every aspect of modern civilization, including science, politics, ethics, philosophy, and much besides.




The Joy of X


Book Description

A delightful tour of the greatest ideas of math, showing how math intersects with philosophy, science, art, business, current events, and everyday life, by an acclaimed science communicator and regular contributor to the "New York Times."




The Manga Guide to Calculus


Book Description

Noriko is just getting started as a junior reporter for the Asagake Times. She wants to cover the hard-hitting issues, like world affairs and politics, but does she have the smarts for it? Thankfully, her overbearing and math-minded boss, Mr. Seki, is here to teach her how to analyze her stories with a mathematical eye. In The Manga Guide to Calculus, you'll follow along with Noriko as she learns that calculus is more than just a class designed to weed out would-be science majors. You'll see that calculus is a useful way to understand the patterns in physics, economics, and the world around us, with help from real-world examples like probability, supply and demand curves, the economics of pollution, and the density of Shochu (a Japanese liquor). Mr. Seki teaches Noriko how to: –Use differentiation to understand a function's rate of change –Apply the fundamental theorem of calculus, and grasp the relationship between a function's derivative and its integral –Integrate and differentiate trigonometric and other complicated functions –Use multivariate calculus and partial differentiation to deal with tricky functions –Use Taylor Expansions to accurately imitate difficult functions with polynomials Whether you're struggling through a calculus course for the first time or you just need a painless refresher, you'll find what you're looking for in The Manga Guide to Calculus. This EduManga book is a translation from a bestselling series in Japan, co-published with Ohmsha, Ltd. of Tokyo, Japan.




Fundamentals of Calculus


Book Description

Features the techniques, methods, and applications of calculus using real-world examples from business and economics as well as the life and social sciences An introduction to differential and integral calculus, Fundamentals of Calculus presents key topics suited for a variety of readers in fields ranging from entrepreneurship and economics to environmental and social sciences. Practical examples from a variety of subject areas are featured throughout each chapter and step-by-step explanations for the solutions are presented. Specific techniques are also applied to highlight important information in each section, including symbols interspersed throughout to further reader comprehension. In addition, the book illustrates the elements of finite calculus with the varied formulas for power, quotient, and product rules that correlate markedly with traditional calculus. Featuring calculus as the “mathematics of change,” each chapter concludes with a historical notes section. Fundamentals of Calculus chapter coverage includes: Linear Equations and Functions The Derivative Using the Derivative Exponents and Logarithms Differentiation Techniques Integral Calculus Integrations Techniques Functions of Several Variables Series and Summations Applications to Probability Supplemented with online instructional support materials, Fundamentals of Calculus is an ideal textbook for undergraduate students majoring in business, economics, biology, chemistry, and environmental science.




Pattern Calculus


Book Description

Over time, basic research tends to lead to specialization – increasingly narrow t- ics are addressed by increasingly focussed communities, publishing in increasingly con ned workshops and conferences, discussing increasingly incremental contri- tions. Already the community of programming languages is split into various s- communities addressing different aspects and paradigms (functional, imperative, relational, and object-oriented). Only a few people manage to maintain a broader view, and even fewer step back in order to gain an understanding about the basic principles, their interrelation, and their impact in a larger context. The pattern calculus is the result of a profound re-examination of a 50-year - velopment. It attempts to provide a unifying approach, bridging the gaps between different programming styles and paradigms according to a new slogan – compu- tion is pattern matching. It is the contribution of this book to systematically and elegantly present and evaluate the power of pattern matching as the guiding paradigm of programming. Patterns are dynamically generated, discovered, passed, applied, and automatically adapted, based on pattern matching and rewriting technology, which allows one to elegantly relate things as disparate as functions and data structures. Of course, pattern matching is not new. It underlies term rewriting – it is, for example, inc- porated in, typically functional, programming languages, like Standard ML – but it has never been pursued as the basis of a unifying framework for programming.




The Calculus of Complex Functions


Book Description

The book introduces complex analysis as a natural extension of the calculus of real-valued functions. The mechanism for doing so is the extension theorem, which states that any real analytic function extends to an analytic function defined in a region of the complex plane. The connection to real functions and calculus is then natural. The introduction to analytic functions feels intuitive and their fundamental properties are covered quickly. As a result, the book allows a surprisingly large coverage of the classical analysis topics of analytic and meromorphic functions, harmonic functions, contour integrals and series representations, conformal maps, and the Dirichlet problem. It also introduces several more advanced notions, including the Riemann hypothesis and operator theory, in a manner accessible to undergraduates. The last chapter describes bounded linear operators on Hilbert and Banach spaces, including the spectral theory of compact operators, in a way that also provides an excellent review of important topics in linear algebra and provides a pathway to undergraduate research topics in analysis. The book allows flexible use in a single semester, full-year, or capstone course in complex analysis. Prerequisites can range from only multivariate calculus to a transition course or to linear algebra or real analysis. There are over one thousand exercises of a variety of types and levels. Every chapter contains an essay describing a part of the history of the subject and at least one connected collection of exercises that together comprise a project-level exploration.




Advanced Calculus (Revised Edition)


Book Description

An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.




Infinite Sequences and Series


Book Description

Careful presentation of fundamentals of the theory by one of the finest modern expositors of higher mathematics. Covers functions of real and complex variables, arbitrary and null sequences, convergence and divergence, Cauchy's limit theorem, more.




How Not to Be Wrong


Book Description

A brilliant tour of mathematical thought and a guide to becoming a better thinker, How Not to Be Wrong shows that math is not just a long list of rules to be learned and carried out by rote. Math touches everything we do; It's what makes the world make sense. Using the mathematician's methods and hard-won insights-minus the jargon-professor and popular columnist Jordan Ellenberg guides general readers through his ideas with rigor and lively irreverence, infusing everything from election results to baseball to the existence of God and the psychology of slime molds with a heightened sense of clarity and wonder. Armed with the tools of mathematics, we can see the hidden structures beneath the messy and chaotic surface of our daily lives. How Not to Be Wrong shows us how--Publisher's description.




Advanced Calculus


Book Description