Power Quality Enhancement Using Custom Power Devices


Book Description

Power Quality Enhancement Using Custom Power Devices considers the structure, control and performance of series compensating DVR, the shunt DSTATCOM and the shunt with series UPQC for power quality improvement in electricity distribution. Also addressed are other power electronic devices for improving power quality in Solid State Transfer Switches and Fault Current Limiters. Applications for these technologies as they relate to compensating busses supplied by a weak line and for distributed generation connections in rural networks, are included. In depth treatment of inverters to achieve voltage support, voltage balancing, harmonic suppression and transient suppression in realistic network environments are also covered. New material on the potential for shunt and series compensation which emphasizes the importance of control design has been introduced.




Proceedings of 2nd International Conference on Intelligent Computing and Applications


Book Description

Second International Conference on Intelligent Computing and Applications was the annual research conference aimed to bring together researchers around the world to exchange research results and address open issues in all aspects of Intelligent Computing and Applications. The main objective of the second edition of the conference for the scientists, scholars, engineers and students from the academia and the industry is to present ongoing research activities and hence to foster research relations between the Universities and the Industry. The theme of the conference unified the picture of contemporary intelligent computing techniques as an integral concept that highlights the trends in computational intelligence and bridges theoretical research concepts with applications. The conference covered vital issues ranging from intelligent computing, soft computing, and communication to machine learning, industrial automation, process technology and robotics. This conference also provided variety of opportunities for the delegates to exchange ideas, applications and experiences, to establish research relations and to find global partners for future collaboration.




Handbook of Research on New Solutions and Technologies in Electrical Distribution Networks


Book Description

As the electrical industry continues to develop, one sector that still faces a range of concerns is the electrical distribution system. Excessive industrialization and inadequate billing are just a few issues that have plagued this electrical sector as it advances into the smart grid environment. Research is necessary to explore the possible solutions in fixing these problems and developing the distribution sector into an active and smart system. The Handbook of Research on New Solutions and Technologies in Electrical Distribution Networks is a collection of innovative research on the methods and applications of solving major issues within the electrical distribution system. Some issues covered within the publication include distribution losses, improper monitoring of system, renewable energy integration with micro-grid and distributed energy sources, and smart home energy management system modelling. This book is ideally designed for power engineers, electrical engineers, energy professionals, developers, technologists, policymakers, researchers, academicians, industry professionals, and students seeking current research on improving this key sector of the electrical industry.




Power Quality


Book Description

Maintaining a stable level of power quality in the distribution network is a growing challenge due to increased use of power electronics converters in domestic, commercial and industrial sectors. Power quality deterioration is manifested in increased losses; poor utilization of distribution systems; mal-operation of sensitive equipment and disturbances to nearby consumers, protective devices, and communication systems. However, as the energy-saving benefits will result in increased AC power processed through power electronics converters, there is a compelling need for improved understanding of mitigation techniques for power quality problems. This timely book comprehensively identifies, classifies, analyses and quantifies all associated power quality problems, including the direct integration of renewable energy sources in the distribution system, and systematically delivers mitigation techniques to overcome these problems. Key features: • Emphasis on in-depth learning of the latest topics in power quality extensively illustrated with waveforms and phasor diagrams. • Essential theory supported by solved numerical examples, review questions, and unsolved numerical problems to reinforce understanding. • Companion website contains solutions to unsolved numerical problems, providing hands-on experience. Senior undergraduate and graduate electrical engineering students and instructors will find this an invaluable resource for education in the field of power quality. It will also support continuing professional development for practicing engineers in distribution and transmission system operators.




Understanding Power Quality Problems


Book Description

Power quality problems have increasingly become a substantial concern over the last decade, but surprisingly few analytical techniques have been developed to overcome these disturbances in system-equipment interactions. Now in this comprehensive book, power engineers and students can find the theoretical background necessary for understanding how to analyze, predict, and mitigate the two most severe power disturbances: voltage sags and interruptions. This is the first book to offer in-depth analysis of voltage sags and interruptions and to show how to apply mathematical techniques for practical solutions to these disturbances. From UNDERSTANDING AND SOLVING POWER QUALITY PROBLEMS you will gain important insights into Various types of power quality phenomena and power quality standards Current methods for power system reliability evaluation Origins of voltage sags and interruptions Essential analysis of voltage sags for characterization and prediction of equipment behavior and stochastic prediction Mitigation methods against voltage sags and interruptions Sponsored by: IEEE Power Electronics Society, IEEE Industry Applications Society, IEEE Power Engineering Society.




2019 Global Conference for Advancement in Technology (GCAT)


Book Description

The Global conference targets different scientific fields and invites academics, researchers and educators to share innovative ideas and expose their works in the presence of experts from all over the world GCAT 2019 focuses on original research and practice driven applications It provides a common linkage between a vibrant scientific and research community and industry professionals by offering a clear view on modern problems and challenges in information technology GCAT 2019 offers a balance between innovative industrial approaches and original research work while keeping the readers informed of the security techniques, approaches, applications and new technologies The conference is an opportunity for students, doctors, academics and researchers to open up to the outside world, make connections and collaborate with various domain experts GCAT 2019 particularly welcomes papers on the following topics




Power Quality Enhancement using Artificial Intelligence Techniques


Book Description

This text discusses sensitivity parametric analysis for the single tuned filter parameters and presents an optimization-based method for solving the allocation problem of the distributed generation units and capacitor banks in distribution systems. It also highlights the importance of artificial intelligence techniques such as water cycle algorithms in solving power quality problems such as over-voltage and harmonic distortion. Features: Presents a sensitivity parametric analysis for the single tuned filter parameters. Discusses optimization-based methods for solving the allocation problem of the distributed generation units and capacitor banks in distribution systems. Highlights the importance of artificial intelligence techniques (water cycle algorithm) for solving power quality problems such as over-voltage and harmonic distortion. Showcases a procedure for harmonic mitigation in active distribution systems using the single tuned harmonic filters. Helps in learning how to determine the optimal planning of the single tuned filters to mitigate the harmonic distortion in distorted systems. It will serve as an ideal reference text for graduate students and academic researchers in the fields of electrical engineering, electronics and communication engineering, Power systems planning and analysis.




Custom Power Devices for Efficient Distributed Energy Systems


Book Description

Custom Power Devices for Efficient Distributed Energy Systems presents a range of novel ideas and concepts based on renewable energy-fed power generation and control, offering avenues to efficient utilization and improved power quality, and addressing power quality issues such as harmonics compensation, supply current balancing, and neutral current compensation. The book begins by introducing distributed power systems within the global renewable energy context, reviewing different types of renewable energy sources and distributed power generation systems, and detailing custom power device design and modelling. This is followed by individual chapters providing in-depth coverage of specific techniques and applications, with insights into various topologies, as well as control algorithms, used for power control in a range of distributed energy conversion systems, such as solar, wind, hydro, and other power sources. Finally, power quality issues in renewable energy distributed generation are discussed and addressed in detail. This is a valuable resource of researchers, faculty, and advanced students with an interest in power generation systems, renewable energy, and power systems engineering, as well as practicing engineers, R&D professionals, managers, and other industry personnel in the renewable energy sector. - Covers established as well as advanced control algorithms for the operation of custom power devices - Extensively explains circuit design and its testing for solar and wind-based energy conversion systems - Includes simulation results and mathematical modeling of control algorithms - Presents applications of converter topologies in solar, wind, hydro, and other power generation systems




Power Quality in Power Systems and Electrical Machines


Book Description

The second edition of this must-have reference covers power quality issues in four parts, including new discussions related to renewable energy systems. The first part of the book provides background on causes, effects, standards, and measurements of power quality and harmonics. Once the basics are established the authors move on to harmonic modeling of power systems, including components and apparatus (electric machines). The final part of the book is devoted to power quality mitigation approaches and devices, and the fourth part extends the analysis to power quality solutions for renewable energy systems. Throughout the book worked examples and exercises provide practical applications, and tables, charts, and graphs offer useful data for the modeling and analysis of power quality issues. - Provides theoretical and practical insight into power quality problems of electric machines and systems - 134 practical application (example) problems with solutions - 125 problems at the end of chapters dealing with practical applications - 924 references, mostly journal articles and conference papers, as well as national and international standards and guidelines




Computational Paradigm Techniques for Enhancing Electric Power Quality


Book Description

This book focusses on power quality improvement and enhancement techniques with aid of intelligent controllers and experimental results. It covers topics ranging from the fundamentals of power quality indices, mitigation methods, advanced controller design and its step by step approach, simulation of the proposed controllers for real time applications and its corresponding experimental results, performance improvement paradigms and its overall analysis, which helps readers understand power quality from its fundamental to experimental implementations. The book also covers implementation of power quality improvement practices. Key Features Provides solution for the power quality improvement with intelligent techniques Incorporated and Illustrated with simulation and experimental results Discusses renewable energy integration and multiple case studies pertaining to various loads Combines the power quality literature with power electronics based solutions Includes implementation examples, datasets, experimental and simulation procedures