Vehicular Electric Power Systems


Book Description

Vehicular Electric Power Systems: Land, Sea, Air, and Space Vehicles acquaints professionals with trends and challenges in the development of more electric vehicles (MEVs) using detailed examples and comprehensive discussions of advanced MEV power system architectures, characteristics, and dynamics. The authors focus on real-world applications and highlight issues related to system stability as well as challenges faced during and after implementation. Probes innovations in the development of more electric vehicles for improved maintenance, support, endurance, safety, and cost-efficiency in automotive, aerospace, and marine vehicle engineering Heralding a new wave of advances in power system technology, Vehicular Electric Power Systems discusses: Different automotive power systems including conventional automobiles, more electric cars, heavy-duty vehicles, and electric and hybrid electric vehicles Electric and hybrid electric propulsion systems and control strategies Aerospace power systems including conventional and advanced aircraft, spacecraft, and the international space station Sea and undersea vehicles The modeling, real-time state estimation, and stability assessment of vehicular power systems Applications of fuel cells in various land, sea, air, and space vehicles Modeling techniques for energy storage devices including batteries, fuel cells, photovoltaic cells, and ultracapacitors Advanced power electronic converters and electric motor drives for vehicular applications Guidelines for the proper design of DC and AC distribution architectures




Influences of Electric Vehicles on Power System and Key Technologies of Vehicle-to-Grid


Book Description

This book analyzes the influence of electric vehicles on microclimate and the indirect influence on power load from a unique perspective. It discusses different aspects of Vehicle-to-grid (V2G) technology, including large and small-scale charging infrastructures, and describes the effect on electricity price, voltage, frequency and other key V2G technologies. It introduces various aspects of the influence of electric vehicles on the power grids and the control strategies for achieving economic, safe and steady grid operation using V2G technologies. This book is suitable for senior undergraduates and postgraduates majoring in electrical, transportation, or environmental engineering, as well as other related professionals.




Electric Vehicle Integration into Modern Power Networks


Book Description

Electric Vehicle Integration into Modern Power Networks provides coverage of the challenges and opportunities posed by the progressive integration of electric drive vehicles. Starting with a thorough overview of the current electric vehicle and battery state-of-the-art, this work describes dynamic software tools to assess the impacts resulting from the electric vehicles deployment on the steady state and dynamic operation of electricity grids, identifies strategies to mitigate them and the possibility to support simultaneously large-scale integration of renewable energy sources. New business models and control management architectures, as well as the communication infrastructure required to integrate electric vehicles as active demand are presented. Finally, regulatory issues of integrating electric vehicles into modern power systems are addressed. Inspired by two courses held under the EES-UETP umbrella in 2010 and 2011, this contributed volume consists of nine chapters written by leading researchers and professionals from the industry as well as academia.




Electric Vehicles in Energy Systems


Book Description

This book discusses the technical, economic, and environmental aspects of electric vehicles and their impact on electrical grids and energy systems. The book is divided into three parts that include load modeling, integration and optimization, and environmental evaluation. Theoretical background and practical examples accompany each section and the authors include helpful tips and hints in the load modeling and optimization sections. This book is intended to be a useful tool for undergraduate and graduate students, researchers and engineers who are trying to solve power and engineering problems related electric vehicles. Provides optimization techniques and their applications for energy systems; Discusses the economic and environmental perspectives of electric vehicles; Contains the most comprehensive information about electric vehicles in a single source.




Energy Systems for Electric and Hybrid Vehicles


Book Description

The book provides thorough coverage of energy systems for electric and hybrid vehicles with a focus on the three main energy system technologies - energy sources, battery charging and vehicle-to-grid systems. Energy sources includes electrochemical energy sources, electromechanical energy storage, hybrid energy sources, on-board solar energy harvesting, on-board thermoelectric energy recovery, and battery management. Battery charging technology ranges from the existing charging strategies to the latest wireless charging techniques for park-and-charge and move-and-charge. Vehicle-to-grid technology covers interdisciplinary topics which link electric vehicles, information technology and power systems for management of energy systems, power interfaces and service scheduling. Researchers and advanced students developing electric/hybrid vehicles and intelligent transport systems in industry and academia will find this book invaluable. As will researchers and advanced students working on automotive engineering and battery/power engineering.




Wireless Power Transfer for Electric Vehicles: Foundations and Design Approach


Book Description

This book describes the fundamentals and applications of wireless power transfer (WPT) in electric vehicles (EVs). Wireless power transfer (WPT) is a technology that allows devices to be powered without having to be connected to the electrical grid by a cable. Electric vehicles can greatly benefit from WPT, as it does away with the need for users to manually recharge the vehicles’ batteries, leading to safer charging operations. Some wireless chargers are available already, and research is underway to develop even more efficient and practical chargers for EVs. This book brings readers up to date on the state-of-the-art worldwide. In particular, it provides: • The fundamental principles of WPT for the wireless charging of electric vehicles (car, bicycles and drones), including compensation topologies, bi-directionality and coil topologies. • Information on international standards for EV wireless charging. • Design procedures for EV wireless chargers, including software files to help readers test their own designs. • Guidelines on the components and materials for EV wireless chargers. • Review and analysis of the main control algorithms applied to EV wireless chargers. • Review and analysis of commercial EV wireless charger products coming to the market and the main research projects on this topic being carried out worldwide. The book provides essential practical guidance on how to design wireless chargers for electric vehicles, and supplies MATLAB files that demonstrate the complexities of WPT technology, and which can help readers design their own chargers.




Electric Powertrain


Book Description

The why, what and how of the electric vehicle powertrain Empowers engineering professionals and students with the knowledge and skills required to engineer electric vehicle powertrain architectures, energy storage systems, power electronics converters and electric drives. The modern electric powertrain is relatively new for the automotive industry, and engineers are challenged with designing affordable, efficient and high-performance electric powertrains as the industry undergoes a technological evolution. Co-authored by two electric vehicle (EV) engineers with decades of experience designing and putting into production all of the powertrain technologies presented, this book provides readers with the hands-on knowledge, skills and expertise they need to rise to that challenge. This four-part practical guide provides a comprehensive review of battery, hybrid and fuel cell EV systems and the associated energy sources, power electronics, machines, and drives. Introduces and holistically integrates the key EV powertrain technologies. Provides a comprehensive overview of existing and emerging automotive solutions. Provides experience-based expertise for vehicular and powertrain system and sub-system level study, design, and optimization. Presents many examples of powertrain technologies from leading manufacturers. Discusses the dc traction machines of the Mars rovers, the ultimate EVs from NASA. Investigates the environmental motivating factors and impacts of electromobility. Presents a structured university teaching stream from introductory undergraduate to postgraduate. Includes real-world problems and assignments of use to design engineers, researchers, and students alike. Features a companion website with numerous references, problems, solutions, and practical assignments. Includes introductory material throughout the book for the general scientific reader. Contains essential reading for government regulators and policy makers. Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles is an important professional resource for practitioners and researchers in the battery, hybrid, and fuel cell EV transportation industry. The resource is a structured, holistic textbook for the teaching of the fundamental theories and applications of energy sources, power electronics, and electric machines and drives to engineering undergraduate and postgraduate students.




Electric Vehicles and the Future of Energy Efficient Transportation


Book Description

The electric vehicle market has been gradually gaining prominence in the world due to the rise in pollution levels caused by traditional IC engine-based vehicles. The advantages of electric vehicles are multi-pronged in terms of cost, energy efficiency, and environmental impact. The running and maintenance cost are considerably less than traditional models. The harmful exhaust emissions are reduced, besides the greenhouse gas emissions, when the electric vehicle is supplied from a renewable energy source. However, apart from some Western nations, many developing and underdeveloped countries have yet to take up this initiative. This lack of enthusiasm has been primarily attributed to the capital investment required for charging infrastructure and the slow transition of energy generation from the fossil fuel to the renewable energy format. Currently, there are very few charging stations, and the construction of the same needs to be ramped up to supplement the growth of electric vehicles. Grid integration issues also crop up when the electric vehicle is used to either do supply addition to or draw power from the grid. These problems need to be fixed at all the levels to enhance the future of energy efficient transportation. Electric Vehicles and the Future of Energy Efficient Transportation explores the growth and adoption of electric vehicles for the purpose of sustainable transportation and presents a critical analysis in terms of the economics, technology, and environmental perspectives of electric vehicles. The chapters cover the benefits and limitations of electric vehicles, techno-economic feasibility of the technologies being developed, and the impact this has on society. Specific points of discussion include electric vehicle architecture, wireless power transfer, battery management, and renewable resources. This book is of interest for individuals in the automotive sector and allied industries, policymakers, practitioners, engineers, technicians, researchers, academicians, and students looking for updated information on the technology, economics, policy, and environmental aspects of electric vehicles.




Vehicle Power Management


Book Description

Vehicle Power Management addresses the challenge of improving vehicle fuel economy and reducing emissions without sacrificing vehicle performance, reliability and durability. It opens with the definition, objectives, and current research issues of vehicle power management, before moving on to a detailed introduction to the modeling of vehicle devices and components involved in the vehicle power management system, which has been proven to be the most cost-effective and efficient method for initial-phase vehicle research and design. Specific vehicle power management algorithms and strategies, including the analytical approach, optimal control, intelligent system approaches and wavelet technology, are derived and analyzed for realistic applications. Vehicle Power Management also gives a detailed description of several key technologies in the design phases of hybrid electric vehicles containing battery management systems, component optimization, hardware-in-the-loop and software-in-the-loop. Vehicle Power Management provides graduate and upper level undergraduate students, engineers, and researchers in both academia and the automotive industry, with a clear understanding of the concepts, methodologies, and prospects of vehicle power management.




Vehicle-to-Grid


Book Description

Vehicle-to-Grid: Linking Electric Vehicles to the Smart Grid provides an integrated treatment of smart grid using electric vehicles by exploring the connection between the stationary grid and PEV power storage. Plug-in electric and hybrid vehicles (PEVs) have the potential to provide substantial storage to a city's grid, a key component in mitigating intermittency issues of power sources. However the batteries of these vehicles also need to be charged at times for when their users need them. As a result, V2G (vehicle-to-grid) is becoming an important issue in the future grid. Topics covered include: - the impact of PEVs and V2G on smart grid and renewable energy systems - distributed energy resource with PEV battery energy storage in the smart grid - power conversion technology in smart grid and PEVs - power control and monitoring of smart grid with PEVs - PEV charging technologies and V2G on distributed energy resources - utility interfaces - economic, social and environmental dimensions of PEVs in the smart grid