Power Systems and Power Plant Control


Book Description

The control of power systems and power plants is a subject of worldwide interest which continues to sustain a high level of research, development and application in many diverse yet complementary areas. Papers pertaining to 13 areas directly related to power systems and representing state-of-the-art methods are included in this volume. The topics covered include linear and nonlinear optimization, static and dynamic state estimation, security analysis, generation control, excitation and voltage control, power plant modelling and control, stability analysis, emergency and restorative controls, large-scale sparse matrix techniques, data communication, microcomputer systems, power system stabilizers, load forecasting, optimum generation scheduling and power system control centers. The compilation of this information in one volume makes it essential reading for a comprehension of the current knowledge in the field of power control.




Power Generation, Operation, and Control


Book Description

A comprehensive text on the operation and control of power generation and transmission systems In the ten years since Allen J. Wood and Bruce F. Wollenberg presented their comprehensive introduction to the engineering and economic factors involved in operating and controlling power generation systems in electric utilities, the electric power industry has undergone unprecedented change. Deregulation, open access to transmission systems, and the birth of independent power producers have altered the structure of the industry, while technological advances have created a host of new opportunities and challenges. In Power Generation, Operation, and Control, Second Edition, Wood and Wollenberg bring professionals and students alike up to date on the nuts and bolts of the field. Continuing in the tradition of the first edition, they offer a practical, hands-on guide to theoretical developments and to the application of advanced operations research methods to realistic electric power engineering problems. This one-of-a-kind text also addresses the interaction between human and economic factors to prepare readers to make real-world decisions that go beyond the limits of mere technical calculations. The Second Edition features vital new material, including: * A computer disk developed by the authors to help readers solve complicated problems * Examination of Optimal Power Flow (OPF) * Treatment of unit commitment expanded to incorporate the Lagrange relaxation technique * Introduction to the use of bounding techniques and other contingency selection methods * Applications suited to the new, deregulated systems as well as to the traditional, vertically organized utilities company Wood and Wollenberg draw upon nearly 30 years of classroom testing to provide valuable data on operations research, state estimation methods, fuel scheduling techniques, and more. Designed for clarity and ease of use, this invaluable reference prepares industry professionals and students to meet the future challenges of power generation, operation, and control.




Power-plant Control and Instrumentation


Book Description

Describes control systems for boilers and heat-recovery steam generators (HRSGs) in a variety of applications, from waste-to-energy plants to combined-cycle gas-turbine power stations. Basics such as methods of connecting instruments are explained, and more advanced discussions of design features of distributed control systems are also included. At every stage, emphasis is given to the interactive nature of plants and to troubleshooting and problem solving. Includes chapter summaries. The author is Fellow of the Institution of Electrical Engineers, and the Institute of Marine Engineers, and is a Senior Member of the Instrument Society of America. Annotation copyrighted by Book News, Inc., Portland, OR




Thermal Power Plant Simulation and Control


Book Description

An exploration of how advances in computing technology and research can be combined to extend the capabilities and economics of modern power plants. The contributors, from academia as well as practising engineers, illustrate how the various methodologies can be applied to power plant operation.




Power Systems & Power Plant Control


Book Description

The control of power systems and power plants is a subject of worldwide interest which continues to sustain a high level of research, development and application in many diverse yet complementary areas. Papers pertaining to 13 areas directly related to power systems and representing state-of-the-art methods are included in this volume. The topics covered include linear and nonlinear optimization, static and dynamic state estimation, security analysis, generation control, excitation and voltage control, power plant modelling and control, stability analysis, emergency and restorative controls, large-scale sparse matrix techniques, data communication, microcomputer systems, power system stabilizers, load forecasting, optimum generation scheduling and power system control centers. The compilation of this information in one volume makes it essential reading for a comprehension of the current knowledge in the field of power control.




Power Generation, Operation, and Control


Book Description

A thoroughly revised new edition of the definitive work on power systems best practices In this eagerly awaited new edition, Power Generation, Operation, and Control continues to provide engineers and academics with a complete picture of the techniques used in modern power system operation. Long recognized as the standard reference in the field, the book has been thoroughly updated to reflect the enormous changes that have taken place in the electric power industry since the Second Edition was published seventeen years ago. With an emphasis on both the engineering and economic aspects of energy management, the Third Edition introduces central "terminal" characteristics for thermal and hydroelectric power generation systems, along with new optimization techniques for tackling real-world operating problems. Readers will find a range of algorithms and methods for performing integrated economic, network, and generating system analysis, as well as modern methods for power system analysis, operation, and control. Special features include: State-of-the-art topics such as market simulation, multiple market analysis, contract and market bidding, and other business topics Chapters on generation with limited energy supply, power flow control, power system security, and more An introduction to regulatory issues, renewable energy, and other evolving topics New worked examples and end-of-chapter problems A companion website with additional materials, including MATLAB programs and power system sample data sets




Scheduling and Operation of Virtual Power Plants


Book Description

Scheduling and Operation of Virtual Power Plants: Technical Challenges and Electricity Markets provides a multidisciplinary perspective on recent advances in VPPs, ranging from required infrastructures and planning to operation and control. The work details the required components in a virtual power plant, including smartness of power system, instrument and information and communication technologies (ICTs), measurement units, and distributed energy sources. Contributors assess the proposed benefits of virtual power plant in solving problems of distributed energy sources in integrating the small, distributed and intermittent output of these units. In addition, they investigate the likely technical challenges regarding control and interaction with other entities. Finally, the work considers the role of VPPs in electricity markets, showing how distributed energy resources and demand response providers can integrate their resources through virtual power plant concepts to effectively participate in electricity markets to solve the issues of small capacity and intermittency. The work is suitable for experienced engineers, researchers, managers and policymakers interested in using VPPs in future smart grids. - Explores key enabling technologies and infrastructures for virtual power plants in future smart energy systems - Reviews technical challenges and introduces solutions to the operation and control of VPPs, particularly focusing on control and interaction with other power system entities - Introduces the key integrating role of VPPs in enabling DER powered participative electricity markets




Power Plants and Power Systems Control 2006


Book Description

Control plays a very important role in all aspects of power plants and power systems. The papers included in the 2006 Proceedings are by authors from a large number of countries around the world. They encompass a wide spectrum of topics in the control of practically every aspect of power plants and power systems.




Power System Dynamics


Book Description

An authoritative guide to the most up-to-date information on power system dynamics The revised third edition of Power System Dynamics and Stability contains a comprehensive, state-of-the-art review of information on the topic. The third edition continues the successful approach of the first and second editions by progressing from simplicity to complexity. It places the emphasis first on understanding the underlying physical principles before proceeding to more complex models and algorithms. The book is illustrated by a large number of diagrams and examples. The third edition of Power System Dynamics and Stability explores the influence of wind farms and virtual power plants, power plants inertia and control strategy on power system stability. The authors—noted experts on the topic—cover a range of new and expanded topics including: Wide-area monitoring and control systems. Improvement of power system stability by optimization of control systems parameters. Impact of renewable energy sources on power system dynamics. The role of power system stability in planning of power system operation and transmission network expansion. Real regulators of synchronous generators and field tests. Selectivity of power system protections at power swings in power system. Criteria for switching operations in transmission networks. Influence of automatic control of a tap changing step-up transformer on the power capability area of the generating unit. Mathematical models of power system components such as HVDC links, wind and photovoltaic power plants. Data of sample (benchmark) test systems. Power System Dynamics: Stability and Control, Third Edition is an essential resource for students of electrical engineering and for practicing engineers and researchers who need the most current information available on the topic.




Control of Power Plants and Power Systems 1992


Book Description

The aim of this symposium is to bring together control engineers and scientists in power plant and power system design. Problems concerning the modelling and the control of single power plant units as well as problems concerning the long-, mid- and short-term dynamics and the control of power systems in detail were treated.