Power Systems


Book Description

Power Systems, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) covers all aspects of power system protection, dynamics, stability, operation, and control. Under the editorial guidance of L.L. Grigsby, a respected and accomplished authority in power engineering, and section editors Andrew Hanson, Pritindra Chowdhuri, Gerry Sheblé, and Mark Nelms, this carefully crafted reference includes substantial new and revised contributions from worldwide leaders in the field. This content provides convenient access to overviews and detailed information on a diverse array of topics. Concepts covered include: Power system analysis and simulation Power system transients Power system planning (reliability) Power electronics Updates to nearly every chapter keep this book at the forefront of developments in modern power systems, reflecting international standards, practices, and technologies. New sections present developments in small-signal stability and power system oscillations, as well as power system stability controls and dynamic modeling of power systems. With five new and 10 fully revised chapters, the book supplies a high level of detail and, more importantly, a tutorial style of writing and use of photographs and graphics to help the reader understand the material. New chapters cover: Symmetrical Components for Power System Analysis Transient Recovery Voltage Engineering Principles of Electricity Pricing Business Essentials Power Electronics for Renewable Energy A volume in the Electric Power Engineering Handbook, Third Edition Other volumes in the set: K12642 Ele




Electrical Power Systems Quality, Third Edition


Book Description

THE DEFINITIVE GUIDE TO POWER QUALITY--UPDATED AND EXPANDED Electrical Power Systems Quality, Third Edition, is a complete, accessible, and up-to-date guide to identifying and preventing the causes of power quality problems. The information is presented without heavy-duty equations, making it practical and easily readable for utility engineers, industrial engineers, technicians, and equipment designers. This in-depth resource addresses the essentials of power quality and tested methods to improve compatibility among the power system, customer equipment, and processes. Coverage includes: Standard terms and definitions for power quality phenomena Protecting against voltage sags and interruptions Harmonic phenomena and dealing with harmonic distortion Transient overvoltages Long-duration voltage variations Benchmarking power quality International Electrotechnical Commission (IEC) and Institute of Electrical and Electronics Engineers (IEEE) standards Maintaining power quality in distributed generation systems Common wiring and grounding problems, along with solutions Site surveys and power quality monitoring




Power System Operation


Book Description




Power System Analysis


Book Description

This is an introduction to power system analysis and design. The text contains fundamental concepts and modern topics with applications to real-world problems, and integrates MATLAB and SIMULINK throughout.




Power Systems


Book Description

Power Systems, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) covers all aspects of power system protection, dynamics, stability, operation, and control. Under the editorial guidance of L.L. Grigsby, a respected and accomplished authority in power engineering, and section editors Andrew Hanson, Pritindra Chowdhuri, Gerry Sheblé, and Mark Nelms, this carefully crafted reference includes substantial new and revised contributions from worldwide leaders in the field. This content provides convenient access to overviews and detailed information on a diverse array of topics. Concepts covered include: Power system analysis and simulation Power system transients Power system planning (reliability) Power electronics Updates to nearly every chapter keep this book at the forefront of developments in modern power systems, reflecting international standards, practices, and technologies. New sections present developments in small-signal stability and power system oscillations, as well as power system stability controls and dynamic modeling of power systems. With five new and 10 fully revised chapters, the book supplies a high level of detail and, more importantly, a tutorial style of writing and use of photographs and graphics to help the reader understand the material. New chapters cover: Symmetrical Components for Power System Analysis Transient Recovery Voltage Engineering Principles of Electricity Pricing Business Essentials Power Electronics for Renewable Energy A volume in the Electric Power Engineering Handbook, Third Edition Other volumes in the set: K12642 Ele




Power Systems, Third Edition


Book Description

Power Systems, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) covers all aspects of power system protection, dynamics, stability, operation, and control. Under the editorial guidance of L.L. Grigsby, a respected and accomplished authority in power engineering, and section editors Andrew Hanson, Pritindra Chowdhuri, Gerry Sheblé, and Mark Nelms, this carefully crafted reference includes substantial new and revised contributions from worldwide leaders in the field. This content provides convenient access to overviews and detailed information on a diverse array of topics. Concepts covered include: Power system analysis and simulation Power system transients Power system planning (reliability) Power electronics Updates to nearly every chapter keep this book at the forefront of developments in modern power systems, reflecting international standards, practices, and technologies. New sections present developments in small-signal stability and power system oscillations, as well as power system stability controls and dynamic modeling of power systems. With five new and 10 fully revised chapters, the book supplies a high level of detail and, more importantly, a tutorial style of writing and use of photographs and graphics to help the reader understand the material. New chapters cover: Symmetrical Components for Power System Analysis Transient Recovery Voltage Engineering Principles of Electricity Pricing Business Essentials Power Electronics for Renewable Energy A volume in the Electric Power Engineering Handbook, Third Edition Other volumes in the set: K12642 Electric Power Generation, Transmission, and Distribution, Third Edition (ISBN: 9781439856284) K13917 Power System Stability and Control, Third Edition (9781439883204) K12650 Electric Power Substations Engineering, Third Edition (9781439856383) K12643 Electric Power Transformer Engineering, Third Edition (9781439856291)




Power System Stability and Control


Book Description

With contributions from worldwide leaders in the field, Power System Stability and Control, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) updates coverage of recent developments and rapid technological growth in essential aspects of power systems. Edited by L.L. Grigsby, a respected and accomplished authority in power engineering, and section editors Miroslav Begovic, Prabha Kundur, and Bruce Wollenberg, this reference presents substantially new and revised content. Topics covered include: Power System Protection Power System Dynamics and Stability Power System Operation and Control This book provides a simplified overview of advances in international standards, practices, and technologies, such as small signal stability and power system oscillations, power system stability controls, and dynamic modeling of power systems. This resource will help readers achieve safe, economical, high-quality power delivery in a dynamic and demanding environment. With five new and 10 fully revised chapters, the book supplies a high level of detail and, more importantly, a tutorial style of writing and use of photographs and graphics to help the reader understand the material. New Chapters Cover: Systems Aspects of Large Blackouts Wide-Area Monitoring and Situational Awareness Assessment of Power System Stability and Dynamic Security Performance Wind Power Integration in Power Systems FACTS Devices A volume in the Electric Power Engineering Handbook, Third Edition. Other volumes in the set: K12642 Electric Power Generation, Transmission, and Distribution, Third Edition (ISBN: 9781439856284) K12648 Power Systems, Third Edition (ISBN: 9781439856338) K12650 Electric Power Substations Engineering, Third Edition (9781439856383) K12643 Electric Power Transformer Engineering, Third Edition (9781439856291)




Advanced Solutions in Power Systems


Book Description

Provides insight on both classical means and new trends in the application of power electronic and artificial intelligence techniques in power system operation and control This book presents advanced solutions for power system controllability improvement, transmission capability enhancement and operation planning. The book is organized into three parts. The first part describes the CSC-HVDC and VSC-HVDC technologies, the second part presents the FACTS devices, and the third part refers to the artificial intelligence techniques. All technologies and tools approached in this book are essential for power system development to comply with the smart grid requirements. Discusses detailed operating principles and diagrams, theory of modeling, control strategies and physical installations around the world of HVDC and FACTS systems Covers a wide range of Artificial Intelligence techniques that are successfully applied for many power system problems, from planning and monitoring to operation and control Each chapter is carefully edited, with drawings and illustrations that helps the reader to easily understand the principles of operation or application Advanced Solutions in Power Systems: HVDC, FACTS, and Artificial Intelligence is written for graduate students, researchers in transmission and distribution networks, and power system operation. This book also serves as a reference for professional software developers and practicing engineers.




Advanced Control of Doubly Fed Induction Generator for Wind Power Systems


Book Description

Covers the fundamental concepts and advanced modelling techniques of Doubly Fed Induction Generators accompanied by analyses and simulation results Filled with illustrations, problems, models, analyses, case studies, selected simulation and experimental results, Advanced Control of Doubly Fed Induction Generator for Wind Power Systems provides the basic concepts for modelling and controlling of Doubly Fed Induction Generator (DFIG) wind power systems and their power converters. It explores both the challenges and concerns of DFIG under a non-ideal grid and introduces the control strategies and effective operations performance options of DFIG under a non-ideal grid. Other topics of this book include thermal analysis of DFIG wind power converters under grid faults; implications of the DFIG test bench; advanced control of DFIG under harmonic distorted grid voltage, including multiple-loop and resonant control; modeling of DFIG and GSC under unbalanced grid voltage; the LFRT of DFIG, including the recurring faults ride through of DFIG; and more. In addition, this resource: Explores the challenges and concerns of Doubly Fed Induction Generators (DFIG) under non-ideal grid Discusses basic concepts of DFIG wind power system and vector control schemes of DFIG Introduces control strategies under a non-ideal grid Includes case studies and simulation and experimental results Advanced Control of Doubly Fed Induction Generator for Wind Power Systems is an ideal book for graduate students studying renewable energy and power electronics as well as for research and development engineers working with wind power converters.




Introduction to Electrical Power Systems


Book Description

Adapted from an updated version of the author's classic Electric Power System Design and Analysis, with new material designed for the undergraduate student and professionals new to Power Engineering. The growing importance of renewable energy sources, control methods and mechanisms, and system restoration has created a need for a concise, comprehensive text that covers the concepts associated with electric power and energy systems. Introduction to Electric Power Systems fills that need, providing an up-to-date introduction to this dynamic field. The author begins with a discussion of the modern electric power system, centering on the technical aspects of power generation, transmission, distribution, and utilization. After providing an overview of electric power and machine theory fundamentals, he offers a practical treatment-focused on applications-of the major topics required for a solid background in the field, including synchronous machines, transformers, and electric motors. He also furnishes a unique look at activities related to power systems, such as power flow and control, stability, state estimation, and security assessment. A discussion of present and future directions of the electrical energy field rounds out the text. With its broad, up-to-date coverage, emphasis on applications, and integrated MATLAB scripts, Introduction to Electric Power Systems provides an ideal, practical introduction to the field-perfect for self-study or short-course work for professionals in related disciplines.