Powerful Pulsed Plasma Generators


Book Description

This book presents experimental and theoretical results on extremely powerful plasma generators. It addresses pulsed electrical mega-ampere arcs and the mechanisms of energy transfer from the arc into hydrogen, helium and air under pressures up to 250 MPa and currents up to 2 MA. Extreme plasma parameters and increased energy density in the arc were achieved. It was found experimentally that increasing the initial gas pressure to hundreds of MPa leads to improved arc stability, high efficiency of energy transfer from arc to gas, and plasma enthalpy growth. The data obtained data provides the basis for the development of electrophysical devices with high energy density, e.g. high intensity sources for visible, UV and X-ray irradiation for laser pumping, generators of high enthalpy plasma jets, and plasma chemical reactors.




Powerful Pulsed Plasma Generators


Book Description

This book presents experimental and theoretical results on extremely powerful plasma generators. It addresses pulsed electrical mega-ampere arcs and the mechanisms of energy transfer from the arc into hydrogen, helium and air under pressures up to 250 MPa and currents up to 2 MA. Extreme plasma parameters and increased energy density in the arc were achieved. It was found experimentally that increasing the initial gas pressure to hundreds of MPa leads to improved arc stability, high efficiency of energy transfer from arc to gas, and plasma enthalpy growth. The data obtained data provides the basis for the development of electrophysical devices with high energy density, e.g. high intensity sources for visible, UV and X-ray irradiation for laser pumping, generators of high enthalpy plasma jets, and plasma chemical reactors.




Pulsed Power


Book Description

Mesyats' Pulsed Power provides in-depth coverage of the generation of pulsed electric power, electron and ion beams, and various types of pulsed electromagnetic radiation. The electric power that can be produced by the methods described ranges from 106 to 1014W for pulse durations of 10-10-10-7s. The book consists of nine parts containing 28 chapters, which deal with various aspects of pulsed power and high-power electronics and cover a concise theory of electric circuits as applied to nanosecond pulse technology; physics of fast processes occurring in electrical discharges in vacuum, gases, and liquids; phenomena in long lines; mechanisms of operation and designs of high-power gas-discharge, plasma, and semiconductor closing and opening switches as well as of high-power electric pulse generators using these switches; solid-state (semiconductor and magnetic) methods of production and transformation of nanosecond high-power pulses; and methods of production of high-power pulsed electron and ion beams. The closing part describes methods applied to produce high-power nanosecond pulsed X-rays, laser beams, microwaves, and ultrawideband electromagnetic radiation. This all-embracing book covers gas, laser, semiconductor, and magnetic circuit elements, the phenomenon of explosive electron emission discovered by the author, diodes of various types, including semiconductor diodes based on the SOS effect discovered with participation of the author, and methods of production of various types of high-power pulsed radiation.




Pulsed Power Systems


Book Description

Pulsed-Power Systems describes the physical and technical foundations for the production and application of high-voltage pulses of very high-power and high-energy character. In the initial chapters, it addresses materials, components and the most common diagnostics. In the second part, three categories of applications with scientific and industrial relevance are detailed: production of strong pulsed electric and magnetic fields, intense radiation sources and pulsed electric (plasma) discharges.




Fundamentals of Electric Propulsion


Book Description

Throughout most of the twentieth century, electric propulsion was considered the technology of the future. Now, the future has arrived. This important new book explains the fundamentals of electric propulsion for spacecraft and describes in detail the physics and characteristics of the two major electric thrusters in use today, ion and Hall thrusters. The authors provide an introduction to plasma physics in order to allow readers to understand the models and derivations used in determining electric thruster performance. They then go on to present detailed explanations of: Thruster principles Ion thruster plasma generators and accelerator grids Hollow cathodes Hall thrusters Ion and Hall thruster plumes Flight ion and Hall thrusters Based largely on research and development performed at the Jet Propulsion Laboratory (JPL) and complemented with scores of tables, figures, homework problems, and references, Fundamentals of Electric Propulsion: Ion and Hall Thrusters is an indispensable textbook for advanced undergraduate and graduate students who are preparing to enter the aerospace industry. It also serves as an equally valuable resource for professional engineers already at work in the field.




Control and Nonlinear Dynamics on Energy Conversion Systems


Book Description

The ever-increasing need for higher efficiency, smaller size, and lower cost make the analysis, understanding, and design of energy conversion systems extremely important, interesting, and even imperative. One of the most neglected features in the study of such systems is the effect of the inherent nonlinearities on the stability of the system. Due to these nonlinearities, these devices may exhibit undesirable and complex dynamics, which are the focus of many researchers. Even though a lot of research has taken place in this area during the last 20 years, it is still an active research topic for mainstream power engineers. This research has demonstrated that these systems can become unstable with a direct result in increased losses, extra subharmonics, and even uncontrollability/unobservability. The detailed study of these systems can help in the design of smaller, lighter, and less expensive converters that are particularly important in emerging areas of research like electric vehicles, smart grids, renewable energy sources, and others. The aim of this Special Issue is to cover control and nonlinear aspects of instabilities in different energy conversion systems: theoretical, analysis modelling, and practical solutions for such emerging applications. In this Special Issue, we present novel research works in different areas of the control and nonlinear dynamics of energy conversion systems.




Strong and Superstrong Pulsed Magnetic Fields Generation


Book Description

Strong pulsed magnetic fields are important for several fields in physics and engineering, such as power generation and accelerator facilities. Basic aspects of the generation of strong and superstrong pulsed magnetic fields technique are given, including the physics and hydrodynamics of the conductors interacting with the field as well as an account of the significant progress in generation of strong magnetic fields using the magnetic accumulation technique. Results of computer simulations as well as a survey of available field technology are completing the volume.




Natural and Artificial Ball Lightning in the Earth’s Atmosphere


Book Description

The monograph is devoted to ball lightning (BL) observed in natural conditions in the air and artificial BL, long-lived luminous formations (LLF), usually obtained in laboratories experimentally. Joint consideration of artificial and natural BL emphasizes the need for a comprehensive analysis of such complex objects. It is the description of the study of the properties of artificial BL and LLF in the end of 20th and 21st centuries that allows the reader to better understand what and how can be experimentally simulated.




Introduction to Plasma Physics


Book Description

Introduction to Plasma Physics is the standard text for an introductory lecture course on plasma physics. The text's six sections lead readers systematically and comprehensively through the fundamentals of modern plasma physics. Sections on single-particle motion, plasmas as fluids, and collisional processes in plasmas lay the groundwork for a thorough understanding of the subject. The authors take care to place the material in its historical context for a rich understanding of the ideas presented. They also emphasize the importance of medical imaging in radiotherapy, providing a logical link to more advanced works in the area. The text includes problems, tables, and illustrations as well as a thorough index and a complete list of references.




High-power Particle Beams (Beams '90) - Proceedings Of The 8th International Conference (In 2 Volumes)


Book Description

The Conference Proceedings include 11 invited papers and about 200 contributed papers on various scientific and technological aspects of high-power particle beams. The following subject areas are covered: Physics and Technology of High-Power Particle Beams, New Developments in Pulsed-Power Technology and High-Power Accelerators, Diagnostics in High-Power Particle Beam Experiments, High-Power Particle Beam Interactions with Matter, High-Power Particle Beams in Fusion Research, High-Density Z-Pinches, Laser Pumping and Microwave Generation by High-Power Particle Beams, Technical and Industrial Applications of Pulsed Power and High-Power Particle Beams.