Practical Aspects of Embedded System Design using Microcontrollers


Book Description

Second in the series, Practical Aspects of Embedded System Design using Microcontrollers emphasizes the same philosophy of “Learning by Doing” and “Hands on Approach” with the application oriented case studies developed around the PIC16F877 and AT 89S52, today’s most popular microcontrollers. Readers with an academic and theoretical understanding of embedded microcontroller systems are introduced to the practical and industry oriented Embedded System design. When kick starting a project in the laboratory a reader will be able to benefit experimenting with the ready made designs and ‘C’ programs. One can also go about carving a big dream project by treating the designs and programs presented in this book as building blocks. Practical Aspects of Embedded System Design using Microcontrollers is yet another valuable addition and guides the developers to achieve shorter product development times with the use of microcontrollers in the days of increased software complexity. Going through the text and experimenting with the programs in a laboratory will definitely empower the potential reader, having more or less programming or electronics experience, to build embedded systems using microcontrollers around the home, office, store, etc. Practical Aspects of Embedded System Design using Microcontrollers will serve as a good reference for the academic community as well as industry professionals and overcome the fear of the newbies in this field of immense global importance.




Introduction to Embedded Systems


Book Description

This textbook serves as an introduction to the subject of embedded systems design, using microcontrollers as core components. It develops concepts from the ground up, covering the development of embedded systems technology, architectural and organizational aspects of controllers and systems, processor models, and peripheral devices. Since microprocessor-based embedded systems tightly blend hardware and software components in a single application, the book also introduces the subjects of data representation formats, data operations, and programming styles. The practical component of the book is tailored around the architecture of a widely used Texas Instrument’s microcontroller, the MSP430 and a companion web site offers for download an experimenter’s kit and lab manual, along with Powerpoint slides and solutions for instructors.




Embedded Systems Design


Book Description

In this new edition the latest ARM processors and other hardware developments are fully covered along with new sections on Embedded Linux and the new freeware operating system eCOS. The hot topic of embedded systems and the internet is also introduced. In addition a fascinating new case study explores how embedded systems can be developed and experimented with using nothing more than a standard PC. * A practical introduction to the hottest topic in modern electronics design* Covers hardware, interfacing and programming in one book* New material on Embedded Linux for embedded internet systems




Making Embedded Systems


Book Description

Interested in developing embedded systems? Since they donâ??t tolerate inefficiency, these systems require a disciplined approach to programming. This easy-to-read guide helps you cultivate a host of good development practices, based on classic software design patterns and new patterns unique to embedded programming. Learn how to build system architecture for processors, not operating systems, and discover specific techniques for dealing with hardware difficulties and manufacturing requirements. Written by an expert whoâ??s created embedded systems ranging from urban surveillance and DNA scanners to childrenâ??s toys, this book is ideal for intermediate and experienced programmers, no matter what platform you use. Optimize your system to reduce cost and increase performance Develop an architecture that makes your software robust in resource-constrained environments Explore sensors, motors, and other I/O devices Do more with less: reduce RAM consumption, code space, processor cycles, and power consumption Learn how to update embedded code directly in the processor Discover how to implement complex mathematics on small processors Understand what interviewers look for when you apply for an embedded systems job "Making Embedded Systems is the book for a C programmer who wants to enter the fun (and lucrative) world of embedded systems. Itâ??s very well writtenâ??entertaining, evenâ??and filled with clear illustrations." â??Jack Ganssle, author and embedded system expert.




Digital System Design - Use of Microcontroller


Book Description

Embedded systems are today, widely deployed in just about every piece of machinery from toasters to spacecraft. Embedded system designers face many challenges. They are asked to produce increasingly complex systems using the latest technologies, but these technologies are changing faster than ever. They are asked to produce better quality designs with a shorter time-to-market. They are asked to implement increasingly complex functionality but more importantly to satisfy numerous other constraints. To achieve the current goals of design, the designer must be aware with such design constraints and more importantly, the factors that have a direct effect on them.One of the challenges facing embedded system designers is the selection of the optimum processor for the application in hand; single-purpose, general-purpose or application specific. Microcontrollers are one member of the family of the application specific processors.The book concentrates on the use of microcontroller as the embedded system?s processor, and how to use it in many embedded system applications. The book covers both the hardware and software aspects needed to design using microcontroller.The book is ideal for undergraduate students and also the engineers that are working in the field of digital system design.Contents• Preface;• Process design metrics;• A systems approach to digital system design;• Introduction to microcontrollers and microprocessors;• Instructions and Instruction sets;• Machine language and assembly language;• System memory; Timers, counters and watchdog timer;• Interfacing to local devices / peripherals;• Analogue data and the analogue I/O subsystem;• Multiprocessor communications;• Serial Communications and Network-based interfaces.







Embedded System Design with ARM Cortex-M Microcontrollers


Book Description

This textbook introduces basic and advanced embedded system topics through Arm Cortex M microcontrollers, covering programmable microcontroller usage starting from basic to advanced concepts using the STMicroelectronics Discovery development board. Designed for use in upper-level undergraduate and graduate courses on microcontrollers, microprocessor systems, and embedded systems, the book explores fundamental and advanced topics, real-time operating systems via FreeRTOS and Mbed OS, and then offers a solid grounding in digital signal processing, digital control, and digital image processing concepts — with emphasis placed on the usage of a microcontroller for these advanced topics. The book uses C language, “the” programming language for microcontrollers, C++ language, and MicroPython, which allows Python language usage on a microcontroller. Sample codes and course slides are available for readers and instructors, and a solutions manual is available to instructors. The book will also be an ideal reference for practicing engineers and electronics hobbyists who wish to become familiar with basic and advanced microcontroller concepts.




Embedded Systems – A Hardware-Software Co-Design Approach


Book Description

This textbook introduces the concept of embedded systems with exercises using Arduino Uno. It is intended for advanced undergraduate and graduate students in computer science, computer engineering, and electrical engineering programs. It contains a balanced discussion on both hardware and software related to embedded systems, with a focus on co-design aspects. Embedded systems have applications in Internet-of-Things (IoT), wearables, self-driving cars, smart devices, cyberphysical systems, drones, and robotics. The hardware chapter discusses various microcontrollers (including popular microcontroller hardware examples), sensors, amplifiers, filters, actuators, wired and wireless communication topologies, schematic and PCB designs, and much more. The software chapter describes OS-less programming, bitmath, polling, interrupt, timer, sleep modes, direct memory access, shared memory, mutex, and smart algorithms, with lots of C-code examples for Arduino Uno. Other topics discussed are prototyping, testing, verification, reliability, optimization, and regulations. Appropriate for courses on embedded systems, microcontrollers, and instrumentation, this textbook teaches budding embedded system programmers practical skills with fun projects to prepare them for industry products. Introduces embedded systems for wearables, Internet-of-Things (IoT), robotics, and other smart devices; Offers a balanced focus on both hardware and software co-design of embedded systems; Includes exercises, tutorials, and assignments.




Embedded Systems Design with the Atmel AVR Microcontroller


Book Description

This textbook provides practicing scientists and engineers an advanced treatment of the Atmel AVR microcontroller. This book is intended as a follow on to a previously published book, titled "Atmel AVR Microcontroller Primer: Programming and Interfacing." Some of the content from this earlier text is retained for completeness. This book will emphasize advanced programming and interfacing skills. We focus on system level design consisting of several interacting microcontroller subsystems. The first chapter discusses the system design process. Our approach is to provide the skills to quickly get up to speed to operate the internationally popular Atmel AVR microcontroller line by developing systems level design skills. We use the Atmel ATmega164 as a representative sample of the AVR line. The knowledge you gain on this microcontroller can be easily translated to every other microcontroller in the AVR line. In succeeding chapters, we cover the main subsystems aboard the microcontroller, providing a short theory section followed by a description of the related microcontroller subsystem with accompanying software for the subsystem. We then provide advanced examples exercising some of the features discussed. In all examples, we use the C programming language. The code provided can be readily adapted to the wide variety of compilers available for the Atmel AVR microcontroller line. We also include a chapter describing how to interface the microcontroller to a wide variety of input and output devices. The book concludes with several detailed system level design examples employing the Atmel AVR microcontroller.




Designing Embedded Systems with PIC Microcontrollers


Book Description

Embedded Systems with PIC Microcontrollers: Principles and Applications is a hands-on introduction to the principles and practice of embedded system design using the PIC microcontroller. Packed with helpful examples and illustrations, the book provides an in-depth treatment of microcontroller design as well as programming in both assembly language and C, along with advanced topics such as techniques of connectivity and networking and real-time operating systems. In this one book students get all they need to know to be highly proficient at embedded systems design. This text combines embedded systems principles with applications, using the16F84A, 16F873A and the 18F242 PIC microcontrollers. Students learn how to apply the principles using a multitude of sample designs and design ideas, including a robot in the form of an autonomous guide vehicle. Coverage between software and hardware is fully balanced, with full presentation given to microcontroller design and software programming, using both assembler and C. The book is accompanied by a companion website containing copies of all programs and software tools used in the text and a ‘student’ version of the C compiler. This textbook will be ideal for introductory courses and lab-based courses on embedded systems, microprocessors using the PIC microcontroller, as well as more advanced courses which use the 18F series and teach C programming in an embedded environment. Engineers in industry and informed hobbyists will also find this book a valuable resource when designing and implementing both simple and sophisticated embedded systems using the PIC microcontroller. *Gain the knowledge and skills required for developing today's embedded systems, through use of the PIC microcontroller.*Explore in detail the 16F84A, 16F873A and 18F242 microcontrollers as examples of the wider PIC family.*Learn how to program in Assembler and C.*Work through sample designs and design ideas, including a robot in the form of an autonomous guided vehicle.*Accompanied by a CD-ROM containing copies of all programs and software tools used in the text and a ‘student' version of the C complier.