Practical Fluorescence Spectroscopy


Book Description

Presenting a detailed, hands-on approach to fluorescence spectroscopy, this book describes experiments that cover basic spectroscopy and advanced aspects of fluorescence spectroscopy. It emphasizes practical guidance, providing background on fundamental concepts as well as guidance on how to handle artifacts, avoid common errors, and interpret data. Nearly 150 experiments from biophysics, biochemistry, and the biomedical sciences demonstrate how methods are applied in practical applications. The result is a hands-on guide to the most important aspects of fluorescence spectroscopy, from steady-state fluorescence to advanced time-resolved fluorescence. Provides a complete overview of nearly 150 experiments using fluorescence spectroscopy, from basic to advanced applications Presents laboratory methods using a variety of instrumental setups with detailed discussion of data analysis and interpretations Covers steady-state phenomena, time-resolved phenomena, and advanced methods Spans biophysical, biochemical, and biomedical applications Describes related concepts, theory, and mathematical background as well as commercially available instruments used for measurements







X-Ray Fluorescence Spectroscopy for Laboratory Applications


Book Description

Provides comprehensive coverage on using X-ray fluorescence for laboratory applications This book focuses on the practical aspects of X-ray fluorescence (XRF) spectroscopy and discusses the requirements for a successful sample analysis, such as sample preparation, measurement techniques and calibration, as well as the quality of the analysis results. X-Ray Fluorescence Spectroscopy for Laboratory Applications begins with a short overview of the physical fundamentals of the generation of X-rays and their interaction with the sample material, followed by a presentation of the different methods of sample preparation in dependence on the quality of the source material and the objective of the measurement. After a short description of the different available equipment types and their respective performance, the book provides in-depth information on the choice of the optimal measurement conditions and the processing of the measurement results. It covers instrument types for XRF; acquisition and evaluation of X-Ray spectra; analytical errors; analysis of homogeneous materials, powders, and liquids; special applications of XRF; process control and automation. An important resource for the analytical chemist, providing concrete guidelines and support for everyday analyses Focuses on daily laboratory work with commercially available devices Offers a unique compilation of knowledge and best practices from equipment manufacturers and users Covers the entire work process: sample preparation, the actual measurement, data processing, assessment of uncertainty, and accuracy of the obtained results X-Ray Fluorescence Spectroscopy for Laboratory Applications appeals to analytical chemists, analytical laboratories, materials scientists, environmental chemists, chemical engineers, biotechnologists, and pharma engineers.




Handbook of Practical X-Ray Fluorescence Analysis


Book Description

X-Ray fluorescence analysis is an established technique for non-destructive elemental materials analysis. This book gives a user-oriented practical guidance to the application of this method. The book gives a survey of the theoretical fundamentals, analytical instrumentation, software for data processing, various excitation regimes including gracing incidents and microfocus measurements, quantitative analysis, applications in routine and micro analysis, mineralogy, biology, medicine, criminal investigations, archeology, metallurgy, abrasion, microelectronics, environmental air and water analysis. This book is the bible of X-Ray fluorescence analysis. It gives the basic knowledge on this technique, information on analytical equipment and guides the reader to the various applications. It appeals to researchers, analytically active engineers and advanced students.




Practical Fluorescence Spectroscopy


Book Description

Presenting a detailed, hands-on approach to fluorescence spectroscopy, this book describes experiments that cover basic spectroscopy and advanced aspects of fluorescence spectroscopy. It emphasizes practical guidance, providing background on fundamental concepts as well as guidance on how to handle artifacts, avoid common errors, and interpret data. Nearly 150 experiments from biophysics, biochemistry, and the biomedical sciences demonstrate how methods are applied in practical applications. The result is a hands-on guide to the most important aspects of fluorescence spectroscopy, from steady-state fluorescence to advanced time-resolved fluorescence. Provides a complete overview of nearly 150 experiments using fluorescence spectroscopy, from basic to advanced applications Presents laboratory methods using a variety of instrumental setups with detailed discussion of data analysis and interpretations Covers steady-state phenomena, time-resolved phenomena, and advanced methods Spans biophysical, biochemical, and biomedical applications Describes related concepts, theory, and mathematical background as well as commercially available instruments used for measurements




Advanced Concepts in Fluorescence Sensing


Book Description

Over the last decade, fluorescence has become the dominant tool in biotechnology and medical imaging. These exciting advances have been underpinned by the advances in time-resolved techniques and instrumentation, probe design, chemical / biochemical sensing, coupled with our furthered knowledge in biology. Complementary volumes 9 and 10, Advanced Concepts of Fluorescence Sensing: Small Molecule Sensing and Advanced Concepts of Fluorescence Sensing: Macromolecular Sensing, aim to summarize the current state of the art in fluorescent sensing. For this reason, Drs. Geddes and Lakowicz have invited chapters, encompassing a broad range of fluorescence sensing techniques. Some chapters deal with small molecule sensors, such as for anions, cations, and CO2, while others summarize recent advances in protein-based and macromolecular sensors. The Editors have, however, not included DNA or RNA based sensing in this volume, as this were reviewed in Volume 7 and is to be the subject of a more detailed volume in the near future.




Practical Fluorescence, Second Edition


Book Description

New edition (first, 1973) of an introduction to the principles and applications of all phases of luminescence spectroscopy. Contains (all rewritten) chapters on general aspects of luminescence, instrumentation, effects of molecular structure and environment, inorganic analysis, phosphorescence, fluo




Principles and Applications of Fluorescence Spectroscopy


Book Description

Fluorescence spectroscopy is an important investigational tool in many areas of analytical science, due to its extremely high sensitivity and selectivity. With many uses across a broad range of chemical, biochemical and medical research, it has become an essential investigational technique allowing detailed, real-time observation of the structure and dynamics of intact biological systems with extremely high resolution. It is particularly heavily used in the pharmaceutical industry where it has almost completely replaced radiochemical labelling. Principles and Applications of Fluorescence Spectroscopy gives the student and new user the essential information to help them to understand and use the technique confidently in their research. By integrating the treatment of absorption and fluorescence, the student is shown how fluorescence phenomena arise and how these can be used to probe a range of analytical problems. A key element of the book is the inclusion of practical laboratory experiments that illustrate the fundamental points and applications of the technique.




Fluorescence Spectroscopy and Microscopy


Book Description

Reflecting the expanding field's need for reliable protocols, Fluorescence Spectroscopy and Microscopy: Methods and Protocols offers techniques from a worldwide team of experts on this versatile and vital subject. The topics covered fall into four broad categories: steady-state fluorescence spectroscopy, time-resolved fluorescence spectroscopy, fluorescent probe development, and the various sub-categories of fluorescence microscopy, such as fluorescence recovery after photobleaching (FRAP), live cell FRET imaging (FRETim), fluorescence lifetime imaging (FLIM), fluorescence fluctuation spectroscopy (FFS), and single-molecule fluorescence spectroscopy (smFS). Written as a part of the popular Methods in Molecular Biology series, chapters include the kind of unambiguous detail and key implementation advice that proves essential for successful results.




Principles of Fluorescence Spectroscopy


Book Description

The third edition of this established classic text reference builds upon the strengths of its very popular predecessors. Organized as a broadly useful textbook Principles of Fluorescence Spectroscopy, 3rd edition maintains its emphasis on basics, while updating the examples to include recent results from the scientific literature. The third edition includes new chapters on single molecule detection, fluorescence correlation spectroscopy, novel probes and radiative decay engineering. Includes a link to Springer Extras to download files reproducing all book artwork, for easy use in lecture slides. This is an essential volume for students, researchers, and industry professionals in biophysics, biochemistry, biotechnology, bioengineering, biology and medicine.