Practical Gamma-ray Spectroscopy


Book Description

The Second Edition of Practical Gamma-Ray Spectrometry has been completely revised and updated, providing comprehensive coverage of the whole gamma-ray detection and spectrum analysis processes. Drawn on many years of teaching experience to produce this uniquely practical volume, issues discussed include the origin of gamma-rays and the issue of quality assurance in gamma-ray spectrometry. This new edition also covers the analysis of decommissioned nuclear plants, computer modelling systems for calibration, uncertainty measurements in QA, and many more topics.




Practical Gamma-Ray Spectrometry


Book Description

Gamma-ray spectrometry is a key technique in the study of the decay of radioactive materials. Used by scientists from a wide range of disciplines, problems can be encountered by the inexperienced user because there is a deceptive simplicity in gamma-ray measurements which can hide significant pitfalls. To resolve this situation, the authors of Practical Gamma-Ray Spectrometry have drawn on many years of teaching experience to produce this uniquely practical volume, giving comprehensive coverage of the whole gamma-ray detection and spectrum analysis processes. Discussions of the origin of gamma-rays and the issue of quality assurance in gamma-ray spectrometry are also included. Practical Gamma-Ray Spectrometry is written with the user in mind and has the following benefits: * Mathematics are kept to a minimum throughout. * No previous knowledge of nuclear matters or instrumentation is assumed. * Detectors and their associated electronic systems are discussed. * Fault-finding guide ensures that any problems can be sorted out with the minimum of fuss. Practical Gamma-Ray Spectrometry will enable all those involved with radioactivity measurements to get the most from their equipment. It will also be of great value to teachers and students in departments where radioactivity is studied, such as physics, chemistry, environmental biology, archaeometry and radiochemistry.




Gamma- and X-ray Spectrometry with Semiconductor Detectors


Book Description

Hardbound. This book covers the topics essential to gamma- and x-ray spectrometry as it is now practiced with semiconductor detectors in the energy range from 5keV to 3MeV. This includes useful physical and mathematical background information, the components of a standard photon spectrometer, spectrum analysis procedures, the energy and efficiency calibration, energy and emission-rate measurement methods and some application examples.




Handbook of Particle Detection and Imaging


Book Description

The handbook centers on detection techniques in the field of particle physics, medical imaging and related subjects. It is structured into three parts. The first one is dealing with basic ideas of particle detectors, followed by applications of these devices in high energy physics and other fields. In the last part the large field of medical imaging using similar detection techniques is described. The different chapters of the book are written by world experts in their field. Clear instructions on the detection techniques and principles in terms of relevant operation parameters for scientists and graduate students are given.Detailed tables and diagrams will make this a very useful handbook for the application of these techniques in many different fields like physics, medicine, biology and other areas of natural science.







Practical Gamma-ray Spectrometry


Book Description

The cutting-edge new edition of the classic introduction to radioactive measurement Gammy-Ray Spectrometry is a key technique in the study of radioactive decay. It measures the rate and extent of radioactivity from a variety of sources, both natural and artificial, including cosmic ray sources, nuclear reactors, high-energy physics experiments, and more. The resulting data can be essential to environmental monitoring and to a range of experimental sciences. For years, Practical Gamma-Ray Spectrometry has served as the classic introduction to this area for current or aspiring practitioners. A comprehensive but accessible treatment of the subject, with a thorough discussion of all major classes of detectors and their associated electronic systems, it contains everything a researcher needs to make optimal gamma-ray measurements. Now fully updated to reflect the latest technology and experimental data, it is a must-own for researchers looking to incorporate gamma-ray spectrometry into their scientific practice. Readers of the third edition of Practical Gamma-Ray Spectrometry will also find: Fault-finding guide for rapid and effective problem resolution Workshop-style approach emphasizing the fundamentals of laboratory practice New sections dealing with novel developments in nuclear structure research, measuring effects of pollution and climate change, new semiconductor materials, and more Practical Gamma-Ray Spectrometry is ideal for PhD students and practicing gamma-ray spectroscopists, including researchers working on radiation, energy and environmental monitoring professionals, and researchers working in physics, archaeometry, and related subjects.




New Insights on Gamma Rays


Book Description

Gamma radiation has been discovered since more than a century and contributed in many achievements in human life. Continuous developments make it necessary to have more understandings and more discussions about well-established concepts as well as newly implemented hypothesis and applications of gamma rays. This book presents new visions of gamma ray spectrometry and applications. I hope this book can present part of the useful applications of gamma rays.




Essential Practical NMR for Organic Chemistry


Book Description

This book describes the use of NMR spectroscopy for dealing with problems of small organic molecule structural elucidation. It features a significant amount of vital chemical shift and coupling information but more importantly, it presents sound principles for the selection of the techniques relevant to the solving of particular types of problem, whilst stressing the importance of extracting the maximum available information from the simple 1-D proton experiment and of using this to plan subsequent experiments. Proton NMR is covered in detail, with a description of the fundamentals of the technique, the instrumentation and the data that it provides before going on to discuss optimal solvent selection and sample preparation. This is followed by a detailed study of each of the important classes of protons, breaking the spectrum up into regions (exchangeables, aromatics, heterocyclics, alkenes etc.). This is followed by consideration of the phenomena that we know can leave chemists struggling; chiral centres, restricted rotation, anisotropy, accidental equivalence, non-first-order spectra etc. Having explained the potential pitfalls that await the unwary, the book then goes on to devote chapters to the chemical techniques and the most useful instrumental ones that can be employed to combat them. A discussion is then presented on carbon-13 NMR, detailing its pros and cons and showing how it can be used in conjunction with proton NMR via the pivotal 2-D techniques (HSQC and HMBC) to yield vital structural information. Some of the more specialist techniques available are then discussed, i.e. flow NMR, solvent suppression, Magic Angle Spinning, etc. Other important nuclei are then discussed and useful data supplied. This is followed by a discussion of the neglected use of NMR as a tool for quantification and new techniques for this explained. The book then considers the safety aspects of NMR spectroscopy, reviewing NMR software for spectral prediction and data handling and concludes with a set of worked Q&As.