Practical Guide to RF-MEMS


Book Description

Closes the gap between hardcore-theoretical and purely experimental RF-MEMS books. The book covers, from a practical viewpoint, the most critical steps that have to be taken in order to develop novel RF-MEMS device concepts. Prototypical RF-MEMS devices, both including lumped components and complex networks, are presented at the beginning of the book as reference examples, and these are then discussed from different perspectives with regard to design, simulation, packaging, testing, and post-fabrication modeling. Theoretical concepts are introduced when necessary to complement the practical hints given for all RF-MEMS development stages. Provides researchers and engineers with invaluable practical hints on how to develop novel RF-MEMS device concepts Covers all critical steps, dealing with design, simulation, optimization, characterization and fabrication of MEMS for radio-frequency applications Addresses frequently disregarded issues, explicitly treating the hard to predict interplay between the three-dimensional device structure and its electromagnetic functionality Bridges theory and experiment, fundamental concepts are introduced with the application in mind, and simulation results are validated against experimental results Appeals to the practice-oriented R&D reader: design and simulation examples are based on widely known software packages such as ANSYS and the hardware description language Verilog.




MEMS


Book Description

Does MEMS technology offer advantages to your company's products? Will miniature machines on a chip solve your application objectives for ôsmaller, better, cheaper, and faster'ö If you are a product development engineer or manager, the decision to design a MEMS device implies having an application and market. This book offers you a practical guide to making this important business decision. Here, both veterans and newcomers to MEMS device design will get advice on evaluating MEMS for their business, followed by guidance on selecting solutions, technologies and design support tools. You will see how experts from around the world have explored MEMS possibilities and achieved new breakthrough devices such as RF-MEMS for mobile telecommunications, micro-optics for internet hardware, catheter-based minimal-invasive operating theatre tools, and in vivo monitoring of exact dosage of medication in ailing patients. This handbook offers a wealth of analytical techniques treating problematic areas such as alternative designs reliability, packaging, and cost effectiveness.




Practical MEMS


Book Description

Practical MEMS focuses on analyzing the operational principles of microsystems. The salient features of the book include: Tutorial approach. The book emphasizes the design and analysis through over 100 calculated examples covering all aspects of MEMS design. Emphasis on design. This book focuses on the microdevice operation. First, the physical operation principles are covered. Second, the design equations are derived and exemplified. Practical MEMS is a perfect companion to MEMS fabrication textbooks. Quantitative performance analysis. The critical performance parameters for the given application are identified and analyzed. For example, the noise and power performance of piezoresistive and capacitive accelerometers is analyzed in detail. Mechanical, resistive (thermal and 1/f-noise), and circuit noise analysis is covered. Application specifications. Different MEMS applications are compared to commercial design requirements. For example, the optical MEMS is analyzed in the context of bar code scanner, projection displays, and optical cross connect specifications. MEMS economics and market analysis. A full chapter is devoted to yield and cost analysis of microfabricated devices. In addition, the market economics for emerging applications such as RF MEMS is discussed.




Advanced RF MEMS


Book Description

An up-to-date guide to the theory and applications of RF MEMS. With detailed information about RF MEMS technology as well as its reliability and applications, this is a comprehensive resource for professionals, researchers, and students alike. • Reviews RF MEMS technologies • Illustrates new techniques that solve long-standing problems associated with reliability and packaging • Provides the information needed to incorporate RF MEMS into commercial products • Describes current and future trends in RF MEMS, providing perspective on industry growth • Ideal for those studying or working in RF and microwave circuits, systems, microfabrication and manufacturing, production management and metrology, and performance evaluation




MEMS: A Practical Guide of Design, Analysis, and Applications


Book Description

A new generation of MEMS books has emerged with this cohesive guide on the design and analysis of micro-electro-mechanical systems (MEMS). Leading experts contribute to its eighteen chapters that encompass a wide range of innovative and varied applications. This publication goes beyond fabrication techniques covered by earlier books and fills a void created by a lack of industry standards. Subjects such as transducer operations and free-space microsystems are contained in its chapters. Satisfying a demand for literature on analysis and design of microsystems the book deals with a broad array of industrial applications. This will interest engineering and research scientists in industry and academia.




Inertial MEMS


Book Description

A practical and systematic overview of the design, fabrication and test of MEMS-based inertial sensors, this comprehensive and rigorous guide shows you how to analyze and transform application requirements into practical designs, and helps you to avoid potential pitfalls and to cut design time. With this book you'll soon be up to speed on the relevant basics, including MEMS technologies, packaging, kinematics and mechanics, and transducers. You'll also get a thorough evaluation of different approaches and architectures for design and an overview of key aspects of testing and calibration. Unique insights into the practical difficulties of making sensors for real-world applications make this up-to-date description of the state of the art in inertial MEMS an ideal resource for professional engineers in industry as well as students looking for a complete introduction to the area.




Smart Sensors and MEMS


Book Description

Smart Sensors and MEMS: Intelligent Devices and Microsystems for Industrial Applications, Second Edition highlights new, important developments in the field, including the latest on magnetic sensors, temperature sensors and microreaction chambers. The book outlines the industrial applications for smart sensors, covering direct interface circuits for sensors, capacitive sensors for displacement measurement in the sub-nanometer range, integrated inductive displacement sensors for harsh industrial environments, advanced silicon radiation detectors in the vacuum ultraviolet (VUV) and extreme ultraviolet (EUV) spectral range, among other topics. New sections include discussions on magnetic and temperature sensors and the industrial applications of smart micro-electro-mechanical systems (MEMS). The book is an invaluable reference for academics, materials scientists and electrical engineers working in the microelectronics, sensors and micromechanics industry. In addition, engineers looking for industrial sensing, monitoring and automation solutions will find this a comprehensive source of information. - Contains new chapters that address key applications, such as magnetic sensors, microreaction chambers and temperature sensors - Provides an in-depth information on a wide array of industrial applications for smart sensors and smart MEMS - Presents the only book to discuss both smart sensors and MEMS for industrial applications




Si-RF Technology


Book Description

This book discusses the recent research developments of various passive microwave circuits on silicon substrate and demonstrated operations catering for multiple frequency bands. It covers the design, modelling, process fabrication and characterization aspects with practical examples. The book will be of use to researchers and engineers working in the field of RF or microwave engineering, who can use the techniques and approaches effectively without having to refer to multiple sources.




Micro and Nanoelectronics Devices, Circuits and Systems


Book Description

This book presents select proceedings of the International Conference on Micro and Nanoelectronics Devices, Circuits and Systems (MNDCS-2022). The book includes cutting-edge research papers in the emerging fields of micro and nanoelectronics devices, circuits, and systems from experts working in these fields over the last decade. The book is a unique collection of chapters from different areas with a common theme and is immensely useful to academic researchers and practitioners in the industry who work in this field.




A Fresh Concept of Software-resemblant Hardware to Leap to 6G and Future Networks


Book Description

For a decade, with the uptake of 4G, we have become accustomed to the relentless increase in data and services on the move. The deployment of 5G is advancing crucial key performance indicators (KPIs), along with quality of service (QoS). Setting the horizon to 2030 and later, 6G will take the KPIs to numbers 100–1000 times better than 5G. Yet, the actual disruption of 6G and future networks (FN) will take place following other unprecedented paths. Artificial intelligence (AI) will be exploited in a threadlike fashion, at any level of the network physical infrastructure. This will introduce, to date unknown features, like self-sustaining, self-evolution and high-resilience of small portions of the infrastructure, pioneering the concept of a network of networks. Each segment of the infrastructure will bear a high degree of independence, while working at the same time as a whole, in full orchestration with the rest of the network. Given such a scenario, this book claims that the established and currently in use paradigms for the design and development of hardware–software (HW–SW) systems, are not appropriate to address the challenges of 6G and, further ahead, of FN. In response, unprecedented design approaches are suggested, relying on a fresh reinterpretation of the standard concept of HW, with specific attention to the network edge and edge intelligence (EI). This work develops some conceptual tools that may help address the technical challenges resulting from the intricate scenario sketched above. Within the mentioned HW reconceptualization, a pivotal role is forecasted for microtechnologies and nanotechnologies, intended with a broad meaning, which embraces, among others, devices, systems (MEMS/NEMS) and materials.