Practical MMIC Design


Book Description

How do you say hello in Arabic? Explore the pages of this Arabic English picture dictionary to learn new words and phrases. Colorful photographs and simple labels make learning Arabic easy.







Microstrip and Printed Antennas: Applications-Based Designs


Book Description

This comprehensive resource presents antenna fundamentals balanced with the design of printed antennas. Over 70 antenna projects, along with design dimensions, design flows and antenna performance results are discussed, including antennas for wireless communication, 5G antennas and beamforming. Examples of smartphone antennas, MIMO antennas, aerospace and satellite remote sensing array antennas, automotive antennas and radar systems and many more printed antennas for various applications are also included. These projects include design dimensions and parameters that incorporate the various techniques used by industries and academia. This book is intended to serve as a practical microstrip and printed antenna design guide to cover various real-world applications. All Antenna projects discussed in this book are designed, analyzed and simulated using full-wave electromagnetic solvers. Based on several years of the author’s research in antenna design and development for RF and microwave applications, this book offers an in-depth coverage of practical printed antenna design methodology for modern applications.




Millimeter-Wave Integrated Circuits


Book Description

Millimeter-Wave Integrated Circuits delivers a detailed overview of MMIC design, specifically focusing on designs for the millimeter-wave (mm-wave) frequency range. The scope of the book is broad, spanning detailed discussions of high-frequency materials and technologies, high-frequency devices, and the design of high-frequency circuits. The design material is supplemented as appropriate by theoretical analyses. The broad scope of the book gives the reader a good theoretical and practical understanding of mm-wave circuit design. It is best-suited for both undergraduate students who are reading or studying high frequency circuit design and postgraduate students who are specializing in the mm-wave field.




RF and Microwave Oscillator Design


Book Description

This groundbreaking book is the first to present the state of the art in microwave oscillator design with an emphasis on new nonlinear methods. A compilation of pioneering work from experts in the field, it also provides rigorous theory and historical background. Invaluable for professionals at all levels of design expertise, this volume helps you to bridge the gap between design practice and new powerful design methods, learn all aspects of modern oscillator design and review practical designs and experimental results of fixed-frequency, high-Q, low-noise oscillators.




Advances in Monolithic Microwave Integrated Circuits for Wireless Systems: Modeling and Design Technologies


Book Description

Monolithic Microwave Integrated Circuit (MMIC) is an electronic device that is widely used in all high frequency wireless systems. In developing MMIC as a product, understanding analysis and design techniques, modeling, measurement methodology, and current trends are essential.Advances in Monolithic Microwave Integrated Circuits for Wireless Systems: Modeling and Design Technologies is a central source of knowledge on MMIC development, containing research on theory, design, and practical approaches to integrated circuit devices. This book is of interest to researchers in industry and academia working in the areas of circuit design, integrated circuits, and RF and microwave, as well as anyone with an interest in monolithic wireless device development.




Microwave Circuit Design


Book Description

This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. Today’s Up-to-Date, Step-by-Step Guide to Designing Active Microwave Circuits Microwave Circuit Design is a complete guide to modern circuit design, including simulation tutorials that demonstrate Keysight Technologies’ Advanced Design System (ADS), one of today’s most widely used electronic design automation packages. And the software-based circuit design techniques that Yeom presents can be easily adapted for any modern tool or environment. Throughout, author Kyung-Whan Yeom uses the physical interpretation of basic concepts and concrete examples—not exhaustive calculations—to clearly and concisely explain the essential theory required to design microwave circuits, including passive and active device concepts, transmission line theory, and the basics of high-frequency measurement. To bridge the gap between theory and practice, Yeom presents real-world, hands-on examples focused on key elements of modern communication systems, radars, and other microwave transmitters and receivers. Practical coverage includes Up-to-date microwave simulation design examples based on ADS and easily adaptable to any simulator Detailed, step-by-step derivations of key design parameters related to procedures, devices, and performance Relevant, hands-on problem sets in every chapter Clear discussions of microwave IC categorization and roles; passive device impedances and equivalent circuits; coaxial and microstrip transmission lines; active devices (FET, BJT, DC Bias); and impedance matching A complete, step-by-step introduction to circuit simulation using the ADS toolset and window framework Low noise amplifier (LNA) design: gains, stability, conjugate matching, and noise circles Power amplifier (PA) design: optimum load impedances, classification, linearity, and composite PAs Microwave oscillator design: oscillation conditions, phase noise, basic circuits, and dielectric resonators Phase lock loops (PLL) design: configuration, operation, components, and loop filters Mixer design: specifications, Schottky diodes, qualitative analysis of mixers (SEM, SBM, DBM), and quantitative analysis of single-ended mixer (SEM) Microwave Circuit Design brings together all the practical skills graduate students and professionals need to successfully design today’s active microwave circuits.




RFIC and MMIC Design and Technology


Book Description

This book gives an in-depth account of GaAs, InP and SiGe, technologies and describes all the key techniques for the design of amplifiers, ranging from filters and data converters to image oscillators, mixers, switches, variable attenuators, phase shifters, integrated antennas and complete monolithic transceivers.




Introduction to MMIC Technology


Book Description

The advent of high speed communications devices and technologies is the driving force of the information age. Integrated circuits (ICs), operating at radio and microwave frequencies, are at the heart of these applications. MMICs have made a great contribution to the speed and efficiency of wireless devices. The aim of this book is to focus on the practical design of MMICs. Hence, the general theory of RFICs and MMICs is presented along with practical design considerations including design simulations. Furthermore, their fabrication and measurement is also presented. I expect that this book will provide guidance to students at both the undergraduate and graduate level who have an interest in this field.




Microwave Power Amplifier Design with MMIC Modules


Book Description

Solid state power amplifiers (SSPA) are a critical part of many microwave systems. Designing SSPAs with monolithic microwave integrated circuits (MMIC) has boosted device performance to much higher levels focused on PA modules. This cutting-edge book offers engineers practical guidance in selecting the best power amplifier module for a particular application and interfacing the selected module with other power amplifier modules in the system. It also explains how to identify and mitigate peripheral issues concerning the PA modules, SSPAs, and microwave systems. This authoritative volume presents the critical techniques and underpinnings of SSPA design, enabling professionals to optimize device and system performance. Engineers gain the knowledge they need to evaluate the optimum topologies for the design of a chain of microwave devices, including power amplifiers. Additionally, the book addresses the interface between the microwave subsystems and the primary DC power, the control and monitoring circuits, and the thermal and EMI paths. Packed with 240 illustrations and over 430 equations, this detailed book provides the practical tools engineers need for their challenging projects in the field.