Practical Oscillator Handbook


Book Description

Oscillators have traditionally been described in books for specialist needs and as such have suffered from being inaccessible to the practitioner. This book takes a practical approach and provides much-needed insights into the design of oscillators, the servicing of systems heavily dependent upon them and the tailoring of practical oscillators to specific demands. To this end maths and formulae are kept to a minimum and only used where appropriate to an understanding of the theory. Once grasped, the theory of the general oscillator is easily put into practical use in actual oscillators. The final two chapters present a collection of oscillators from which the practising engineer or the hobbyist can obtain useful guidance for many kinds of projects. Irving Gottlieb is a leading author of many books for practising engineers, technicians and students of electronic and electrical engineering. First Newnes title by this best-selling author Clarity and crispness in an often obscure field




Practical Electronics Handbook


Book Description

Ian Sinclair's Practical Electronics Handbook combines a wealth useful day-to-day electronics information, concise explanations and practical guidance in this essential companion to anyone involved in electronics design and construction. The compact collection of key data, fundamental principles and circuit design basics provides an ideal reference for a wide range of students, enthusiasts, technicians and practitioners of electronics who have progressed beyond the basics. The sixth edition is updated throughout with new material on microcontrollers and computer assistance, and a new chapter on digital signal processing. - Invaluable handbook and reference for hobbyists, students and technicians - Essential day-to-day electronics information, clear explanations and practical guidance in one compact volume - Assumes some previous electronics knowledge but coverage to interest beginners and professionals alike




Practical Transformer Handbook


Book Description

Practical Transformer Handbook shows how a transformer can be put to use, common problems which a user will face, and which is the most appropriate in a particular situation. Anyone working with transformers will find this a valuable user guide. Theory and mathematics are kept to a minimum, and instead the everyday working of these devices is described. Practical Transformer Handbook covers transformers in electronic technology, control techniques, instrumentation, and other more unusual applications. In this practical book a wide range of devices, uses and problems are explored, from parametric transformers, transmission line RF transformers and Tesla coils to the effect of geomagnetic storms on power transformers and dealing with the ever-present third harmonic in iron core transformers. Irving Gottlieb is a leading author of many books for practising engineers, technicians and students of electronic and electrical engineering. - Practical, concise and wide-ranging coverage - Maths and theory kept to a minimum - Written for a wide professional market







Practical RF Handbook


Book Description

Radio Frequency (RF) is the fundamental technology behind a huge range of modern consumer electronics and wireless communication devices, and this book provides a comprehensive and methodical guide to RF for engineers, technicians, enthusiasts and hobbyists with an interest in the electronics behind radio frequency communications.In Practical RF Handbook, Ian Hickman draws upon his own radio engineering background to develop a hands-on guide to the difficulties and pitfalls of RF design with a minimum of maths. A broad coverage includes devices, circuits, equipment, systems, radio propagation and external noise to fully acquaint the reader with the necessary circuit technologies and techniques.The fourth edition brings the book fully up-to-date with new advances in RF, including coverage of OFDM, UWB, WiFi and WiMax. - Practical coverage of the cutting-edge technology behind the fast-moving world of communications electronics - Real-world design guide for engineers, technicians and students, covering key principles with a minimum of maths - Updated throughout, including coverage of recent hot topics such as UWB, WiFi and WiMax




The Designer's Guide to High-Purity Oscillators


Book Description

try to predict it using mathematical expressions. His heuristic model without mathematical proof is almost universally accepted. However, it entails a c- cuit specific noise factor that is not known a priori and so is not predictive. In this work, we attempt to address the topic of oscillator design from a diff- ent perspective. By introducing a new paradigm that accurately captures the subtleties of phase noise we try to answer the question: 'why do oscillators behave in a particular way?' and 'what can be done to build an optimum design?' It is also hoped that the paradigm is useful in other areas of circuit design such as frequency synthesis and clock recovery. In Chapter 1, a general introduction and motivation to the subject is presented. Chapter 2 summarizes the fundamentals of phase noise and timing jitter and discusses earlier works on oscillator's phase noise analysis. Chapter 3 and Chapter 4 analyze the physical mechanisms behind phase noise generation in current-biased and Colpitts oscillators. Chapter 5 discusses design trade-offs and new techniques in LC oscillator design that allows optimal design. Chapter 6 and Chapter 7 discuss a topic that is typically ignored in oscillator design. That is flicker noise in LC oscillators. Finally, Chapter 8 is dedicated to the complete analysis of the role of varactors both in tuning and AM-FM noise conversion.




Quartz Crystal Oscillator Circuits Design Handbook


Book Description

The object of this handbook is to assemble a set of design methods for crystal oscillators in the frequency range of 1 KC to 200 MC with the aim of facilitating design, eliminating crystal unit misapplications, and reducing design costs. The handbook is not directed at the design of ultra-stable crystal oscillators, but rather at the non-temperature controlled, medium frequency stability oscillator commonly in use in many types of communications equipment. The handbook contains discussions of: (1) The electrical characteristics of crystal units, condition of usage, and methods of measurement. (2) Characteristics of tube and transistor amplifiers. (3) Characteristics of impedance transforming networks. (4) Detailed design information on series resonance and anti-resonance oscillators. (5) Design examples together with experimental evaluation data covering most of the 1 KC to 200 MC range. (Author).




Practical Oscillator Circuits


Book Description

One of the most frequently use electronic building blocks is the oscillator, and the aim of this book is to provide a rich source of these for enthusiasts to experiment with and perhaps use in their own designs.




Foundations of Oscillator Circuit Design


Book Description

Oscillators are an important component in today's RF and microwave systems, and practitioners in the field need to know how to design oscillators for stability and top performance. Offering engineers broader coverage than other oscillator design books on the market, this comprehensive resource considers the complete frequency range, from low-frequency audio oscillators to more complex oscillators found at the RF and microwave frequencies. Packed with over 1,200 equations, the book gives professionals a thorough understanding of the principles and practice of oscillator circuit design and emphasizes the use of time-saving CAD (computer aided design) simulation techniques. From the theory and characteristics of oscillators, to the design of a wide variety of oscillators (including tuned-circuit, crystal, negative-resistance, and relaxation oscillators), this unique book is a one-stop reference practitioners can turn to again and again when working on their challenging projects in this field.




Handbook of Humidity Measurement, Volume 2


Book Description

Because of unique water properties, humidity affects many living organisms, including humans and materials. Humidity control is important in various fields, from production management to creating a comfortable living environment. The second volume of The Handbook of Humidity Measurement is entirely devoted to the consideration of different types of solid-state devices developed for humidity measurement. This volume discusses the advantages and disadvantages about the capacitive, resistive, gravimetric, hygrometric, field ionization, microwave, Schottky barrier, Kelvin probe, field-effect transistor, solid-state electrochemical, and thermal conductivity-based humidity sensors. Additional features include: Provides a comprehensive analysis of the properties of humidity-sensitive materials, used for the development of such devices. Describes numerous strategies for the fabrication and characterization of humidity sensitive materials and sensing structures used in sensor applications. Explores new approaches proposed for the development of humidity sensors. Considers conventional devices such as phsychometers, gravimetric, mechanical (hair), electrolytic, child mirror hygrometers, etc., which were used for the measurement of humidity for several centuries. Handbook of Humidity Measurement, Volume 2: Electronic and Electrical Humidity Sensors provides valuable information for practicing engineers, measurement experts, laboratory technicians, project managers in industries and national laboratories, as well as university students and professors interested in solutions to humidity measurement tasks as well as in understanding fundamentals of any gas sensor operation and development.