Practical Production of Optical Thin Films


Book Description

This book deals with the typical equipment, materials, processes, monitoring, and control used in the practical fabrication/production of optical thin films. It focuses on the practical elements needed to actually produce optical coatings.




Practical Design of Optical Thin Films, Fifth Edition


Book Description

This book deals with the basic fundamentals, understanding, and design of optical thin films, or interference coatings for practical production. It focuses on one of the main subjects that is critical to meeting the practical challenges of producing optical coatings. This is the design of coatings, an understanding of which allows the practitioner to know the possibilities and limitations involved in reducing, enhancing, or otherwise controlling the reflection, transmission, and absorption of light (visible or otherwise). This Fifth Edition now includes measurement of index, thickness, and color; the determination of tooling factors; and the programming of Macros, Workbooks, and FilmStar Basic.




Practical Design and Production of Optical Thin Films


Book Description

Providing insider viewpoints and perspectives unavailable in any other text, this book presents useful guidelines and tools to produce effective coatings and films. Covering subjects ranging from materials selection and process development to successful system construction and optimization, it contains expanded discussions on design visualization, dense wavelength division multiplexing, new coating equipment, electrochromic and chemically active coatings, ion-assisted deposition, and optical monitoring sensitivity. Furnishing real-world examples and know-how, the book introduces Fourier analysis and synthesis without difficult mathematical concepts and equations.




Practical Design and Production of Optical Thin Films


Book Description

Providing insider viewpoints and perspectives unavailable in any other text, this book presents useful guidelines and tools to produce effective coatings and films. Covering subjects ranging from materials selection and process development to successful system construction and optimization, it contains expanded discussions on design visualization, dense wavelength division multiplexing, new coating equipment, electrochromic and chemically active coatings, ion-assisted deposition, and optical monitoring sensitivity. Furnishing real-world examples and know-how, the book introduces Fourier analysis and synthesis without difficult mathematical concepts and equations.




Optical Thin Films and Coatings


Book Description

Optical Thin Films and Coatings: From Materials to Applications, Second Edition, provides an overview of thin film materials and their properties, design and manufacture across a wide variety of application areas. Sections explore their design and manufacture and their unconventional features, including the scattering properties of random structures in thin films, optical properties at short wavelengths, thermal properties and color effects. Other chapters focus on novel materials, including organic optical coatings, surface multiplasmonics, optical thin films containing quantum dots, and optical coatings, including laser components, solar cells, displays and lighting, and architectural and automotive glass. The book presents a technical resource for researchers and engineers working with optical thin films and coatings. It is also ideal for professionals in the security, automotive, space and other industries who need an understanding of the topic. - Provides thorough review of applications of optical coatings including laser components, solar cells, glazing, displays and lighting - One-stop reference that addresses deposition techniques, properties, and applications of optical thin films and coatings - Novel methods, suggestions for analysis, and applications makes this a valuable resource for experts in the field as well




Spectroscopic Ellipsometry


Book Description

Ellipsometry is an experimental technique for determining the thickness and optical properties of thin films. It is ideally suited for films ranging in thickness from sub-nanometer to several microns. Spectroscopic measurements have greatly expanded the capabilities of this technique and introduced its use into all areas where thin films are found: semiconductor devices, flat panel and mobile displays, optical coating stacks, biological and medical coatings, protective layers, and more. While several scholarly books exist on the topic, this book provides a good introduction to the basic theory of the technique and its common applications. The target audience is not the ellipsometry scholar, but process engineers and students of materials science who are experts in their own fields and wish to use ellipsometry to measure thin film properties without becoming an expert in ellipsometry itself.




A Practical Guide to Optical Metrology for Thin Films


Book Description

A one-stop, concise guide on determining and measuring thin film thickness by optical methods. This practical book covers the laws of electromagnetic radiation and interaction of light with matter, as well as the theory and practice of thickness measurement, and modern applications. In so doing, it shows the capabilities and opportunities of optical thickness determination and discusses the strengths and weaknesses of measurement devices along with their evaluation methods. Following an introduction to the topic, Chapter 2 presents the basics of the propagation of light and other electromagnetic radiation in space and matter. The main topic of this book, the determination of the thickness of a layer in a layer stack by measuring the spectral reflectance or transmittance, is treated in the following three chapters. The color of thin layers is discussed in chapter 6. Finally, in chapter 7, the author discusses several industrial applications of the layer thickness measurement, including high-reflection and anti-reflection coatings, photolithographic structuring of semiconductors, silicon on insulator, transparent conductive films, oxides and polymers, thin film photovoltaics, and heavily doped silicon. Aimed at industrial and academic researchers, engineers, developers and manufacturers involved in all areas of optical layer and thin optical film measurement and metrology, process control, real-time monitoring, and applications.




Thin Films and Coatings in Biology


Book Description

The surface of materials is routinely exposed to various environmental influences. Surface modification presents a technological challenge for material scientists, physicists, and engineers, particularly when those surfaces are subjected to function within human body environment. This book provides a comprehensive coverage of the major issues and topics dealing with interaction of soft living matter with the surface of implants. Fundamental scientific concepts are embedded through experimental data and a broad range of case studies. First chapters cover the basics on biocompatibility of many different thin films of metals, alloys, ceramics, hydrogels, and polymers, following with case studies dealing with orthopedic and dental coatings. Next, a novel and low-cost coating deposition technique capable of production of several types of nanostructures is introduced through simple calculations and several illustrations. Moreover, chapter 6 and 7 present important topics on surface treatment of polymers, which is a subject that has seen many developments over the past decade. The last chapters target mainly the applications of coatings in biology such as in bio-sensing, neuroscience, and cancer detection. With several illustrations, micrographs, and case studies along with suitable references in each chapter, this book will be essential for graduate students and researchers in the multidisciplinary field of bio-coatings.




Introduction to Surface and Thin Film Processes


Book Description

This book covers the experimental and theoretical understanding of surface and thin film processes. It presents a unique description of surface processes in adsorption and crystal growth, including bonding in metals and semiconductors. Emphasis is placed on the strong link between science and technology in the description of, and research for, new devices based on thin film and surface science. Practical experimental design, sample preparation and analytical techniques are covered, including detailed discussions of Auger electron spectroscopy and microscopy. Thermodynamic and kinetic models of structure are emphasised throughout. The book provides extensive leads into practical and research literature, as well as resources on the World Wide Web (see http://venables.asu.edu/book). Each chapter contains problems which aim to develop awareness of the subject and the methods used. Aimed as a graduate textbook, this book will also be useful as a sourcebook for graduate students, researchers and practitioners in physics, chemistry, materials science and engineering.




Nanostructured Thin Films


Book Description

Nanostructured Thin Films: Fundamentals and Applications presents an overview of the synthesis and characterization of thin films and their nanocomposites. Both vapor phase and liquid phase approaches are discussed, along with the methods that are sufficiently attractive for large-scale production. Examples of applications in clean energy, sensors, biomedicine, anticorrosion and surface modification are also included. As the applications of thin films in nanomedicine, cell phones, solar cell-powered devices, and in the protection of structural materials continues to grow, this book presents an important research reference for anyone seeking an informed overview on their structure and applications. - Shows how thin films are being used to create more efficient devices in the fields of medicine and energy harvesting - Discusses how to alter the design of nanostructured thin films by vapor phase and liquid phase methods - Explores how modifying the structure of thin films for specific applications enhances their performance