Handbook of Simplified Solid State Circuit Design


Book Description

Explains the rules involved in selecting components for specific transistor circuits.




Microwave Solid State Circuit Design


Book Description

Provides detailed coverage of passive and active RF and microwave circuit design. Discusses the practical aspects of microwave circuits including fabrication technologies. Includes a treatment of heterostructure and wide-band gap devices. Examines compact and low cost circuit design methodologies.




Solid State Pulse Circuits


Book Description

This volume extensively covers semiconductor pulse circuits, explaining circuit operation and analysis, and discusses in detail practical pulse circuit design methods.The first chapters explain the characteristics of pulse waveforms and RC circuits that must be understood before the study of pulse circuitry can commence. The operation of diodes, BJTs, FETs, and op-amps in switching circuits is covered next. This leads to the design and analysis of inverters, Schmitt trigger circuits, multivibrators, IC timer circuits, ramp generators, and function generators. Logic gates, logic circuits, and IC logic families are also studied. After individual circuits and gates are studied, they are used as building blocks to explain digital counting, digital frequency meters, ADCs and DACs, pulse modulation, time division multiplexing. Many design and analysis examples are offered throughout the text. The circuit design approach is a simple step-by-step procedure. Device data sheets in the appendices are referred to, and standard-value components are selected.




Practical Switching Power Supply Design


Book Description

Take the "black magic" out of switching power supplies with Practical Switching Power Supply Design! This is a comprehensive "hands-on" guide to the theory behind, and design of, PWM and resonant switching supplies. You'll find information on switching supply operation and selecting an appropriate topology for your application. There's extensive coverage of buck, boost, flyback, push-pull, half bridge, and full bridge regulator circuits. Special attention is given to semiconductors used in switching supplies. RFI/EMI reduction, grounding, testing, and safety standards are also detailed. Numerous design examples and equations are given and discussed. Even if your primary expertise is in logic or microprocessor engineering, you'll be able to design a power supply that's right for your application with this essential guide and reference! - Gives special attention to resonant switching power supplies, a state-of-the-art trend in switching power supply design - Approaches switching power supplies in an organized way beginning with the advantages of switching supplies and thier basic operating principles - Explores various configurations of pulse width modulated (PWM) switching supplies and gives readers ideas for the direction of their designs - Especially useful for practicing design engineers whose primary specialty is not in analog or power engineering fields




Solid State Radio Engineering


Book Description

A comprehensive text that covers both receiver and transmitter circuits, reflecting the past decade's developments in solid-state technology. Emphasizes design using practical circuit elements, with basic ideas of electrical noise, resonant impedance-matching circuits, and modulation theory thoroughly explained. Contains the latest techniques in radio frequency power amplifier design, accepted state-of-the-art technology based on bipolar junction transistors, VMOS RF power FETs, high-efficiency techniques, envelope elimination and restoration, envelope feedback, and other newly emerging technologies. Requires a knowledge of complex algebra, Fourier series, and Fourier transforms. Also includes numerous worked-out examples that relate the theory to practical circuit applications, and homework problems keyed to corresponding sections of the text.




Practical Audio Amplifier Circuit Projects


Book Description

Practical Audio Amplifier Circuit Projects builds on the introduction to electronic circuits provided in Singmin's innovative and successful first book, Beginning Electronics Through Projects. Both books draw on the author's many years of experience as electronics professional and as hobbyist. As a result, his project descriptions are lively, practical, and very clear. With this new volume, the reader can build relatively simple systems and achieve useable results quickly. The projects included here allow a hobbyist to build amplifier circuits, test them, and then put them into a system. Progress through a graduated series of learning activities culminates in unique devices that are nevertheless easy to build. Learn the basic building blocks of audio amplifier circuit design and then apply your knowledge to your own audio inventions. Targets the intermediate to advanced reader with challenging projects that teach important circuit theories and principles Provides a ready source of audio circuits to professional audio engineers Includes an electric guitar pacer project that lets you "jam" with your favorite band!







Practical Guide to Organic Field Effect Transistor Circuit Design


Book Description

The field of organic electronics spans a very wide range of disciplines from physics and chemistry to hardware and software engineering. This makes the field of organic circuit design a daunting prospect full of intimidating complexities, yet to be exploited to its true potential. Small focussed research groups also find it difficult to move beyond their usual boundaries and create systems-on-foil that are comparable with the established silicon world.This book has been written to address these issues, intended for two main audiences; firstly, physics or materials researchers who have thus far designed circuits using only basic drawing software; and secondly, experienced silicon CMOS VLSI design engineers who are already knowledgeable in the design of full custom transistor level circuits but are not familiar with organic devices or thin film transistor (TFT) devices.In guiding the reader through the disparate and broad subject matters, a concise text has been written covering the physics and chemistry of the materials, the derivation of the transistor models, the software construction of the simulation compact models, and the engineering challenges of a right-first-time design flow, with notes and references to the current state-of-the-art advances and publications. Real world examples of simulation models, circuit designs, fabricated samples and measurements have also been given demonstrating how the theory can be used in applications.




Solid State Batteries: Materials Design and Optimization


Book Description

The field of solid state ionics is multidisciplinary in nature. Chemists, physicists, electrochimists, and engineers all are involved in the research and development of materials, techniques, and theoretical approaches. This science is one of the great triumphs of the second part of the 20th century. For nearly a century, development of materials for solid-state ionic technology has been restricted. During the last two decades there have been remarkable advances: more materials were discovered, modem technologies were used for characterization and optimization of ionic conduction in solids, trial and error approaches were deserted for defined predictions. During the same period fundamental theories for ion conduction in solids appeared. The large explosion of solid-state ionic material science may be considered to be due to two other influences. The first aspect is related to economy and connected with energy production, storage, and utilization. There are basic problems in industrialized countries from the economical, environmental, political, and technological points of view. The possibility of storing a large amount of utilizable energy in a comparatively small volume would make a number of non-conventional intermittent energy sources of practical convenience and cost. The second aspect is related to huge increase in international relationships between researchers and exchanges of results make considerable progress between scientists; one find many institutes joined in common search programs such as the material science networks organized by EEC in the European countries.