Manual on Estimation of Probable Maximum Precipitation (PMP)


Book Description

The manual describes procedure for estimating the maximum probable precipitation and the maximum probable flood. This is the third revised version. The first and second editions of this manual were published in 1973 and 1986, respectively. The current edition keeps a majority of the content from the second edition. Newly added content in this third edition primarily results from experiences, since 1986, in directly estimating PMP for the requirements of a given project in a design watershed on probable maximum flood (PMF) in China, the United States of America, Australia and India.--Publisher's description.







Review of the Draft Fourth National Climate Assessment


Book Description

Climate change poses many challenges that affect society and the natural world. With these challenges, however, come opportunities to respond. By taking steps to adapt to and mitigate climate change, the risks to society and the impacts of continued climate change can be lessened. The National Climate Assessment, coordinated by the U.S. Global Change Research Program, is a mandated report intended to inform response decisions. Required to be developed every four years, these reports provide the most comprehensive and up-to-date evaluation of climate change impacts available for the United States, making them a unique and important climate change document. The draft Fourth National Climate Assessment (NCA4) report reviewed here addresses a wide range of topics of high importance to the United States and society more broadly, extending from human health and community well-being, to the built environment, to businesses and economies, to ecosystems and natural resources. This report evaluates the draft NCA4 to determine if it meets the requirements of the federal mandate, whether it provides accurate information grounded in the scientific literature, and whether it effectively communicates climate science, impacts, and responses for general audiences including the public, decision makers, and other stakeholders.




Introduction to Hydrometeorology


Book Description

Introduction to Hydrometeorology is the study of the hydrolic cycle, which is the circulation of water from the seas, into the atmosphere, and back to either land or sea. This book describes hydrometeorology or the application of meteorology to problems that pertain to hydrology, and then discusses the approach, through meteorology, to the solution of hydrologic problems. This text outlines observation methods on the subject and discusses the applications of hydrometeorology to problems encountered in the study of river and lake behaviors. Topics include precipitation, melting of ice, streamflows, lakes, evaporation, and evapotranspiration. The frequently used methods in analysis, such as employing statistics to hydrometereological problems, precipitation analysis, and streamflow routing are explained. This text also shows how extending streamflow records can be helpful in predicting the regime or course of a stream in the future. Records of seasonal and annual flow, flood runoff, peak discharge, as well as seasons of low flow and drought become useful tools in estimating the frequency and magnitude of streamflows. After which, the book discusses possible engineering designs in irrigation, storm sewers, and reservoirs. The text looks into the ways how human has influenced the hydrologic cycle through induced precipitation, melting of ice covers, and urbanization. Lastly, some climactic trends and cycles that bring about climate change and water resource development are discussed. This text can be used by students studying hydrology and those with meteorology majors. This book can also be read by meteorologists, environmentalists, and people working in general earth sciences.







Attribution of Extreme Weather Events in the Context of Climate Change


Book Description

As climate has warmed over recent years, a new pattern of more frequent and more intense weather events has unfolded across the globe. Climate models simulate such changes in extreme events, and some of the reasons for the changes are well understood. Warming increases the likelihood of extremely hot days and nights, favors increased atmospheric moisture that may result in more frequent heavy rainfall and snowfall, and leads to evaporation that can exacerbate droughts. Even with evidence of these broad trends, scientists cautioned in the past that individual weather events couldn't be attributed to climate change. Now, with advances in understanding the climate science behind extreme events and the science of extreme event attribution, such blanket statements may not be accurate. The relatively young science of extreme event attribution seeks to tease out the influence of human-cause climate change from other factors, such as natural sources of variability like El Niño, as contributors to individual extreme events. Event attribution can answer questions about how much climate change influenced the probability or intensity of a specific type of weather event. As event attribution capabilities improve, they could help inform choices about assessing and managing risk, and in guiding climate adaptation strategies. This report examines the current state of science of extreme weather attribution, and identifies ways to move the science forward to improve attribution capabilities.







Atmospheric Rivers


Book Description

This book is the standard reference based on roughly 20 years of research on atmospheric rivers, emphasizing progress made on key research and applications questions and remaining knowledge gaps. The book presents the history of atmospheric-rivers research, the current state of scientific knowledge, tools, and policy-relevant (science-informed) problems that lend themselves to real-world application of the research—and how the topic fits into larger national and global contexts. This book is written by a global team of authors who have conducted and published the majority of critical research on atmospheric rivers over the past years. The book is intended to benefit practitioners in the fields of meteorology, hydrology and related disciplines, including students as well as senior researchers.