Precision Measurement of Microwave Thermal Noise


Book Description

Precision Measurement of Microwave Comprehensive resource covering the foundations and analysis of precision noise measurements with a detailed treatment of their uncertainties Precision Measurement of Microwave Thermal Noise presents the basics of precise measurements of thermal noise at microwave frequencies and guides readers through how to evaluate the uncertainties in such measurement. The focus is on measurement methods used at the U.S. National Institute of Standards and Technology (NIST), but the general principles and methods are useful in a wide range of applications. Readers will learn how to perform accurate microwave noise measurements using the respected author’s expertise of calculations to aid understanding of the challenges and solutions. The text covers the background required for the analysis of the measurements and the standards employed to calibrate radiofrequency and microwave radiometers. It also covers measurements of noise temperature (power) and the noise characteristics of amplifiers and transistors. In addition to the usual room-temperature two-port devices, cryogenic devices and multiport amplifiers are also discussed. Finally, the connection of these lab-based measurements to remote-sensing measurement (especially from space) is considered, and possible contributions of the lab-based measurements to remote-sensing applications are discussed. Specific topics and concepts covered in the text include: Noise-temperature standards, covering ambient standards, hot (oven) standards, cryogenic standards, and other standards and noise sources Amplifier noise, covering definition of noise parameters, measurement of noise parameters, uncertainty analysis for noise-parameter measurements, and simulations and strategies On-wafer noise measurements, covering on-wafer microwave formalism, noise temperature, on-wafer noise-parameter measurements, and uncertainties Multiport amplifiers, covering formalism and noise matrix, definition of noise figure for multiports, and degradation of signal-to-noise ratio Containing some introductory material, Precision Measurement of Microwave Thermal Noise is an invaluable resource on the subject for advanced students and all professionals working in (or entering) the field of microwave noise measurements, be it in a standards lab, a commercial lab, or academic research.










Precision Measurement and Calibration


Book Description

Textbook and reference source for seientists and engineers in standards laboratories.




Meson Production, Interaction And Decay - Proceedings Of The Workshop


Book Description

This workshop proceedings presents interesting lectures on the theoretical and experimental problems which may be studied using the new GeV accelerators. It provides a discussion of ongoing and planned experiments on the CELCIUS, COSY, LEAR, SATURNE and SIS accelerators as well as general descriptions of the experimental techniques applied in these experiments. There is special focus on the meson production mechanism in various reactions, meson spectroscopy and meson decay modes.







NBS List of Publications


Book Description




Precision Motion Control


Book Description

Precision manufacturing is a development that has been gathering momentum over the last century and accelerating over the last 25 years in terms of research, development, and application to product innovation. The driving force in this development arises from requirements for much higher performance of products, higher reliability, longer life, lower cost, and miniaturization. This development is widely known as precision engineering and, today, it is generally defined as manufacturing to tolerances which are better than one part in 105. Applications are abound and can be found in various semiconductor processes (e.g., lithography, wafer probing, inspection), Coordinate Measuring Machines (CMMs) and precision metrology systems (e.g., Scanning Probe Microscopy (SPM)), and robot/machine tools to carry out micro-assembly (e.g., MEMS) and delicate short wavelength laser processes. As an enabling technology for precision engineering, precision instrumentation and measurement, geometrical calibration and compensation, and motion control are directly important issues to be addressed in the overall system design and realization. This book is focused on these aspects of precision engineering. It is a compilation of the major results and publications from a major project which develop a state-of-the-art high-speed, ultra-precision robotic system. A comprehensive and thorough treatment of the subject matter is provided in a manner that is amenable to a broad base of readers, ranging from the academics to the practitioners, by providing detailed experimental verifications of the developed materials.