Precision Cosmology with Galaxy Cluster Surveys


Book Description

The acceleration of the universe, which is often attributed to "dark energy, " has posed one of the main challenges to fundamental physics. Galaxy clusters provide one of the most sensitive probes of dark energy because their abundance reflects the growth rate of large-scale structure and the expansion rate of the universe. Several large galaxy cluster surveys will soon provide tremendous statistical power to constrain the properties of dark energy; however, the constraining power of these surveys will be determined by how well systematic errors are controlled. Of these systematic errors, the dominant one comes from inferring cluster masses using observable signals of clusters, the so-called "observable--mass distribution." This thesis focuses on extracting dark energy information from forthcoming large galaxy cluster surveys, including how we maximize the cosmological information, how we control important systematics, and how precisely we need to calibrate theoretical models. We study how multi-wavelength follow-up observations can improve cluster mass calibration in optical surveys. We also investigate the impact of theoretical uncertainties in calibrating the spatial distributions of galaxy clusters on dark energy constraints. In addition, we explore how the formation history of galaxy clusters impacts the self-calibration of cluster mass. In addition, we use N-body simulations to develop a new statistical sample of cluster-size halos in order to further understand the observable--mass distribution. We study the completeness of subhalos in our cluster sample by comparing them with the satellite galaxies in the Sloan Digital Sky Survey. We also study how subhalo selections impact the inferred correlation between formation time and optical mass tracers, including cluster richness and velocity dispersion.




Precision Cosmology


Book Description




Heating versus Cooling in Galaxies and Clusters of Galaxies


Book Description

This volume documents recent developments that have advanced our understanding of the heating and cooling mechanisms in galaxies and galaxy clusters. Chapters detail results from multi-wavelength observations and advances in numerical hydrodynamical simulations. An additional section covers new research findings on feedback and self-regulatory mechanisms during cosmic structure formation in general and in galaxy formation in particular.




Background Microwave Radiation and Intracluster Cosmology


Book Description

This study is devoted to the Sunyaev-Zeldovich (S-Z) effect, and important related topics in cluster and CMB research. S-Z science is about to be significantly enhanced by unique, multi-faceted cluster and cosmological yield, at a level of precision in accord with the high standards of the current era that was heralded by spectacular achievements in cosmological CMB research. The pedagogical reviews and technical seminars included in this volume represent most of the important current topics in S-Z work and in the astrophysics of clusters. The publication touches upon all relevant aspects of the S-Z effect and its use as a precise cluster and cosmological probe. To commemorate the 40th anniversary of the detection of the CMB by Penzias and Wilson (in 1964), there is a chapter devoted to the history of this discovery. In his fascinating account of their work, he outlines also some lessons pertinent to current scientific issues. Other chapters discuss very interesting related observational work in Europe and the US.




Galaxy Evolution in Groups and Clusters


Book Description

Galaxy groups and clusters provide excellent laboratories for studying galaxy properties in different environments and at different look-back times. In particular, the recent detections of high-redshift cluster candidates, only possible with the current high-technology instrumentation, add a new dimension to the problem. Along with the ever increasing computing power and sophisticated algorithms to model clusters of galaxies, it may help us to understand the origins of today's groups and clusters, as well as of their member galaxies. These workshop proceedings provide a snapshot of the current research in this subject, covering the observations, theory and numerical simulations relevant to galaxy evolution in groups and clusters. In this book, intended primarily to researchers in the field, particular emphasis is given to the recent impressive progress in the field, on important new results, and on the future prospects and open questions to be tackled.




Cosmological Aspects of X-Ray Clusters of Galaxies


Book Description

The NATO Advanced Study Institute "Cosmological Aspects of X-Ray Clus ters of Galaxies" took place in Vel en , Westphalia, Germany, from June 6 to June 18, 1993. It addressed the fruitful union of two topics, cosmology and X-ray clus ters, both of which carry substantial scientific weight at the beginning of the last decenium of the last century in the second millenium of our era. The so far largest X-ray "All-Sky Survey", observed by the ROSAT X-ray satel lite, and ROSAT's deep pointed observations, have considerably enlarged the base of X-ray astronomy, particularly concerning extragalactic sources. Cosmology has gained significant impetus from the large optical direct and spectroscopic surveys, based on high quality 2-dimensional receivers at large telescopes and powerful scan ning devices, harvesting the full information 1 content from the older technique of employing photographic plates. Radioastronomy and IR-astronomy with IRAS, as well as r-astronomy with GRO, continue and strengthen the role of extragalactic research. The rapidly growing computer power in data reduction and data storage facilities support the evolution towards large-number statistics. A most significant push was given to early cosmology by the needs of physics in trying to unravel the nature of forces which govern our material world. The topic of the ASI was chosen because it opens new vistas on this for ever new problem: the universe. Clusters of galaxies probe large-scale matter distributions and the structure of space-time.




X-Ray Emission from Clusters of Galaxies


Book Description

First published in 1988, this book is a comprehensive survey of the astrophysical characteristics of the hot gas which pervades clusters of galaxies. In our universe, clusters of galaxies are the largest organised structures. Typically they comprise hundreds of galaxies moving through a region of space ten million light years in diameter. The volume between the galaxies is filled with gas having a temperature of 100 million degrees. This material is a strong source of cosmic X-rays. Dr Sarazin describes the theoretical description of the origin, dynamics, and physical state of the cluster gas. Observations by radio and optical telescopes are also summarised. This account is addressed to professional astronomers and to graduate students. It is an exhaustive summary of a rapidly expanding field of research in modern astrophysics.




Tracing Cosmic Evolution with Galaxy Clusters


Book Description

Annotation International astronomers provide an overview of multiwavelength studies of galaxy clusters including optical, X-ray to UV, near- and far-IR, sub-mm, and radio bands. The contributions emphasize two complementary aspects of clusters of galaxies: large-scale views that help trace the structure of the Universe, and enormous astrophysical laboratories that reveal the history of cosmic baryons and the processes of galaxy formation. Borgani and Mezzetti (both astronomy, U. of Trieste, Italy) edit topics including cluster formations of radio loud quasars, mass-to-light ratio of galaxy systems, and Butcher-Oemler effect in high redshift X-ray selected clusters. The volume has no subject index. Annotation (c)2003 Book News, Inc., Portland, OR (booknews.com)