Precision Electroweak Physics at Electron-Positron Colliders


Book Description

This up-to-date volume reviews the recent contributions of electron-positron colliders to the precision test of the electroweak Standard Model. In particular, it contains a short summary of the measurements at the Z resonance and gives an overview of the electroweak processes above the Z. Subsequently, the measurement of the W mass at LEP is discussed in detail. The implications for the precision test of the Standard Model are presented, giving the status of the global electroweak fit before the startup of Large Hadron Collider. The final chapters give an outlook on the electroweak physics at a future linear collider. The book also features many illustrations and tables. Readers obtain a coherent overview of the results of 20 years of electroweak physics conducted at electron-positron colliders.




60 Years Of Cern Experiments And Discoveries


Book Description

The book is a compilation of the most important experimental results achieved during the past 60 years at CERN - from the mid-1950s to the latest discovery of the Higgs particle. Covering the results from the early accelerators at CERN to those most recent at the LHC, the contents provide an excellent review of the achievements of this outstanding laboratory. Not only presented is the impressive scientific progress achieved during the past six decades, but also demonstrated is the special way in which successful international collaboration exists at CERN.




Electroweak Theory


Book Description




Electroweak Physics Beyond The Standard Model - International Workshop


Book Description

The implications of the latest results from high energy experiments as well as non-accelerator experiments are discussed in this proceedings. Emphasis is given to neutrino physics, tests of the standard electroweak theory, and its extensions. Perspectives for the physics of the new decade are also considered.




Bridging Circuits and Fields


Book Description

Energy and power are fundamental concepts in electromagnetism and circuit theory, as well as in optics, signal processing, power engineering, electrical machines, and power electronics. However, in crossing the disciplinary borders, we encounter understanding difficulties due to (1) the many possible mathematical representations of the same physical objects, and (2) the many possible physical interpretations of the same mathematical entities. The monograph proposes a quantum and a relativistic approach to electromagnetic power theory that is based on recent advances in physics and mathematics. The book takes a fresh look at old debates related to the significance of the Poynting theorem and the interpretation of reactive power. Reformulated in the mathematical language of geometric algebra, the new expression of electromagnetic power reflects the laws of conservation of energy-momentum in fields and circuits. The monograph offers a mathematically consistent and a physically coherent interpretation of the power concept and of the mechanism of power transmission at the subatomic (mesoscopic) level. The monograph proves (paraphrasing Heaviside) that there is no finality in the development of a vibrant discipline: power theory.




Hadronic Matter


Book Description




Theory of Light Hydrogenic Bound States


Book Description

Light one-electron atoms are a classical subject of quantum physics. The very discovery and further progress of quantum mechanics is intimately connected to the explanation of the main features of hydrogen energy levels. Each step in the development of quantum physics led to a better understanding of the bound state physics. The Bohr quantization rules of the old quantum theory were created in order to explain the existence of the stable discrete energy levels. The nonrelativistic quantum mechanics of Heisenberg and Schr ̈ odinger provided a self-consistent scheme for description of bound states. The re- tivistic spin one half Dirac equation quantitatively described the main - perimental features of the hydrogen spectrum. Discovery of the Lamb shift [1], a subtle discrepancy between the predictions of the Dirac equation and the experimental data, triggered development of modern relativistic quantum electrodynamics, and subsequently the Standard Model of modern physics. Despite its long and rich history the theory of atomic bound states is still very much alive today. New importance to the bound state physics was given by the development of quantum chromodynamics, the modern theory of strong interactions. It was realized that all hadrons, once thought to be the elementary building blocks of matter, are themselves atom-like bound states of elementary quarks bound by the color forces.




Free Surface Flows under Compensated Gravity Conditions


Book Description

This book considers the behavior of fluids in a low-gravity environment (e.g. spacecraft) with special emphasis on application in PMD (propellant management device) systems. Since PMD designs are not testable on ground and thus completely rely on analytical or numerical concepts, this book treats three different flow problems with analytical, numerical and experimental means. These problems are linked together by the same set of equations and boundary conditions.




Electrical Resistivity of Thin Metal Films


Book Description

The intent of this book is to report on the electrical, optical, and structural properties of silver and gold films in dependence on substrate material, annealing treatment, and gas adsorption. A main point is the calculation of the scattering cross section of the conduction electrons. All results are substantiated by extended experimental data, as well as numerous illustrations and tables.




Quantum Tunneling in Complex Systems


Book Description

In the last two decades remarkable progress has been made in understanding and describing tunneling processes in complex systems in terms of classical trajectories. This book introduces recent concepts and achievements with particular emphasis on a dynamical formulation and relations to specific systems in mesoscopic, molecular, and atomic physics. Advanced instanton techniques, e.g. for decay rates and tunnel splittings, are discussed in the first part. The second part covers current developments for wave-packet tunneling in real-time, and the third part describes thermodynamics and dynamical approaches for barrier transmission in statistical, particularly dissipative systems.