Precision Lens Molding of Glass: A Process Perspective


Book Description

This book highlights the tools and processes used to produce high-quality glass molded optics using commercially available equipment. Combining scientific data with easy-to-understand explanations of specific molding issues and general industry information based on firsthand studies and experimentation, it provides useful formulas for readers involved in developing develop in-house molding capabilities, or those who supply molded glass optics. Many of the techniques described are based on insights gained from industry and research over the past 50 years, and can easily be applied by anyone familiar with glass molding or optics manufacturing. There is an abundance of information from around the globe, but knowledge comes from the application of information, and there is no knowledge without experience. This book provides readers with information, to allow them to gain knowledge and achieve success in their glass molding endeavors.




Modeling Fracture Behavior in Precision Glass Molding


Book Description

A temperature and strain rates dependent fracture model is developed based on Weibull statistics to quantitatively describe the brittle-ductile transition of glass fracture in precision glass molding process. Under the assistance of FEM simulation, this fracture model can be used to calculate the fracture probability of glass during the precision glass molding process. Meanwhile, the most probable fracture timing, location of fracture initiation and fracture pattern can be also predicted.




Molded Optics


Book Description

While several available texts discuss molded plastic optics, none provide information on all classes of molded optics. Filling this gap, Molded Optics: Design and Manufacture presents detailed descriptions of molded plastic, glass, and infrared optics. Since an understanding of the manufacturing process is necessary to develop cost-effective, produ




Predictive Maintenance in Dynamic Systems


Book Description

This book provides a complete picture of several decision support tools for predictive maintenance. These include embedding early anomaly/fault detection, diagnosis and reasoning, remaining useful life prediction (fault prognostics), quality prediction and self-reaction, as well as optimization, control and self-healing techniques. It shows recent applications of these techniques within various types of industrial (production/utilities/equipment/plants/smart devices, etc.) systems addressing several challenges in Industry 4.0 and different tasks dealing with Big Data Streams, Internet of Things, specific infrastructures and tools, high system dynamics and non-stationary environments . Applications discussed include production and manufacturing systems, renewable energy production and management, maritime systems, power plants and turbines, conditioning systems, compressor valves, induction motors, flight simulators, railway infrastructures, mobile robots, cyber security and Internet of Things. The contributors go beyond state of the art by placing a specific focus on dynamic systems, where it is of utmost importance to update system and maintenance models on the fly to maintain their predictive power.




Microfabrication and Precision Engineering


Book Description

Microfabrication and precision engineering is an increasingly important area relating to metallic, polymers, ceramics, composites, biomaterials and complex materials. Micro-electro-mechanical-systems (MEMS) emphasize miniaturization in both electronic and mechanical components. Microsystem products may be classified by application, and have been applied to a variety of fields, including medical, automotive, aerospace and alternative energy. Microsystems technology refers to the products as well as the fabrication technologies used in production. With detailed information on modelling of micro and nano-scale cutting, as well as innovative machining strategies involved in microelectrochemical applications, microchannel fabrication, as well as underwater pulsed Laser beam cutting, among other techniques, Microfabrication and Precision Engineering is a valuable reference for students, researchers and professionals in the microfabrication and precision engineering fields. - Contains contributions by top industry experts - Includes the latest techniques and strategies - Special emphasis given to state-of-the art research and development in microfabrication and precision engineering




Glassy Materials Based Microdevices


Book Description

Microtechnology has changed our world since the last century, when silicon microelectronics revolutionized sensor, control and communication areas, with applications extending from domotics to automotive, and from security to biomedicine. The present century, however, is also seeing an accelerating pace of innovation in glassy materials; as an example, glass-ceramics, which successfully combine the properties of an amorphous matrix with those of micro- or nano-crystals, offer a very high flexibility of design to chemists, physicists and engineers, who can conceive and implement advanced microdevices. In a very similar way, the synthesis of glassy polymers in a very wide range of chemical structures offers unprecedented potential of applications. The contemporary availability of microfabrication technologies, such as direct laser writing or 3D printing, which add to the most common processes (deposition, lithography and etching), facilitates the development of novel or advanced microdevices based on glassy materials. Biochemical and biomedical sensors, especially with the lab-on-a-chip target, are one of the most evident proofs of the success of this material platform. Other applications have also emerged in environment, food, and chemical industries. The present Special Issue of Micromachines aims at reviewing the current state-of-the-art and presenting perspectives of further development. Contributions related to the technologies, glassy materials, design and fabrication processes, characterization, and, eventually, applications are welcome.




Advances in Optics, Vol. 3


Book Description

'Advances in Optics: Reviews' Book Series is a comprehensive study of the field of optics, which provides readers with the most up-to-date coverage of optics, photonics and lasers with a good balance of practical and theoretical aspects. Directed towards both physicists and engineers this Book Series is also suitable for audiences focusing on applications of optics. The Vol.3 is devoted to various topics of applied optics and contains 17 chapters written by 49 experts in the field from 14 countries: Australia, China, India, Israel, Italy, Japan, Malaysia, Mexico, The Netherlands, Poland, Taiwan, UK, USA, Vietnam A clear comprehensive presentation makes these books work well as both a teaching resources and a reference books. The book is intended for researchers and scientists in physics and optics, in academia and industry, as well as postgraduate students.




The Failure Mechanisms of Coated Precision Glass Molding Tools


Book Description

Molding tools in precision glass molding fail easily, even with protective thin film coatings applied. In this work, various efficient methods for assessing glass-coating interactions are developed, including a new, automated testing rig. Analysis of the testing results provides a better understanding of these mechanisms and how they are influenced by material properties and process parameters, so that the appropriate measures can be taken to prolong the life of the molding tools.




The Properties of Optical Glass


Book Description

From the reviews: "The book should be acquired by all libraries with an interest in glass science and applications...the title will endure for many years as the standard work on the properties of optical glass." Optical Systems Engineering




Fabrication of Complex Optical Components


Book Description

High quality optical components for consumer products made of glass and plastic are mostly fabricated by replication. This highly developed production technology requires several consecutive, well-matched processing steps called a "process chain" covering all steps from mold design, advanced machining and coating of molds, up to the actual replication and final precision measurement of the quality of the optical components. Current market demands for leading edge optical applications require high precision and cost effective parts in large volumes. For meeting these demands it is necessary to develop high quality process chains and moreover, to crosslink all demands and interdependencies within these process chains. The Transregional Collaborative Research Center "Process chains for the replication of complex optical elements" at Bremen, Aachen and Stillwater worked extensively and thoroughly in this field from 2001 to 2012. This volume will present the latest scientific results for the complete process chain giving a profound insight into present-day high-tech production.