Improving and Accelerating Therapeutic Development for Nervous System Disorders


Book Description

Improving and Accelerating Therapeutic Development for Nervous System Disorders is the summary of a workshop convened by the IOM Forum on Neuroscience and Nervous System Disorders to examine opportunities to accelerate early phases of drug development for nervous system drug discovery. Workshop participants discussed challenges in neuroscience research for enabling faster entry of potential treatments into first-in-human trials, explored how new and emerging tools and technologies may improve the efficiency of research, and considered mechanisms to facilitate a more effective and efficient development pipeline. There are several challenges to the current drug development pipeline for nervous system disorders. The fundamental etiology and pathophysiology of many nervous system disorders are unknown and the brain is inaccessible to study, making it difficult to develop accurate models. Patient heterogeneity is high, disease pathology can occur years to decades before becoming clinically apparent, and diagnostic and treatment biomarkers are lacking. In addition, the lack of validated targets, limitations related to the predictive validity of animal models - the extent to which the model predicts clinical efficacy - and regulatory barriers can also impede translation and drug development for nervous system disorders. Improving and Accelerating Therapeutic Development for Nervous System Disorders identifies avenues for moving directly from cellular models to human trials, minimizing the need for animal models to test efficacy, and discusses the potential benefits and risks of such an approach. This report is a timely discussion of opportunities to improve early drug development with a focus toward preclinical trials.




Assuring Data Quality and Validity in Clinical Trials for Regulatory Decision Making


Book Description

In an effort to increase knowledge and understanding of the process of assuring data quality and validity in clinical trials, the IOM hosted a workshop to open a dialogue on the process to identify and discuss issues of mutual concern among industry, regulators, payers, and consumers. The presenters and panelists together developed strategies that could be used to address the issues that were identified. This IOM report of the workshop summarizes the present status and highlights possible strategies for making improvements to the education of interested and affected parties as well as facilitating future planning.




Rare Diseases and Orphan Products


Book Description

Rare diseases collectively affect millions of Americans of all ages, but developing drugs and medical devices to prevent, diagnose, and treat these conditions is challenging. The Institute of Medicine (IOM) recommends implementing an integrated national strategy to promote rare diseases research and product development.




A Comprehensive Guide to Toxicology in Preclinical Drug Development


Book Description

A Comprehensive Guide to Toxicology in Preclinical Drug Development is a resource for toxicologists in industry and regulatory settings, as well as directors working in contract resource organizations, who need a thorough understanding of the drug development process. Incorporating real-life case studies and examples, the book is a practical guide that outlines day-to-day activities and experiences in preclinical toxicology. This multi-contributed reference provides a detailed picture of the complex and highly interrelated activities of preclinical toxicology in both small molecules and biologics. The book discusses discovery toxicology and the international guidelines for safety evaluation, and presents traditional and nontraditional toxicology models. Chapters cover development of vaccines, oncology drugs, botanic drugs, monoclonal antibodies, and more, as well as study development and personnel, the role of imaging in preclinical evaluation, and supporting materials for IND applications. By incorporating the latest research in this area and featuring practical scenarios, this reference is a complete and actionable guide to all aspects of preclinical drug testing. - Chapters written by world-renowned contributors who are experts in their fields - Includes the latest research in preclinical drug testing and international guidelines - Covers preclinical toxicology in small molecules and biologics in one single source




Modern Methods of Clinical Investigation


Book Description

The very rapid pace of advances in biomedical research promises us a wide range of new drugs, medical devices, and clinical procedures. The extent to which these discoveries will benefit the public, however, depends in large part on the methods we choose for developing and testing them. Modern Methods of Clinical Investigation focuses on strategies for clinical evaluation and their role in uncovering the actual benefits and risks of medical innovation. Essays explore differences in our current systems for evaluating drugs, medical devices, and clinical procedures; health insurance databases as a tool for assessing treatment outcomes; the role of the medical profession, the Food and Drug Administration, and industry in stimulating the use of evaluative methods; and more. This book will be of special interest to policymakers, regulators, executives in the medical industry, clinical researchers, and physicians.




Improving the Utility and Translation of Animal Models for Nervous System Disorders


Book Description

Nervous system diseases and disorders are highly prevalent and substantially contribute to the overall disease burden. Despite significant information provided by the use of animal models in the understanding of the biology of nervous system disorders and the development of therapeutics; limitations have also been identified. Treatment options that are high in efficacy and low in side effects are still lacking for many diseases and, in some cases are nonexistent. A particular problem in drug development is the high rate of attrition in Phase II and III clinical trials. Why do many therapeutics show promise in preclinical animal models but then fail to elicit predicted effects when tested in humans? On March 28 and 29, 2012, the Institute of Medicine Forum on Neuroscience and Nervous System Disorders convened the workshop "Improving Translation of Animal Models for Nervous System Disorders" to discuss potential opportunities for maximizing the translation of new therapies from animal models to clinical practice. The primary focus of the workshop was to examine mechanisms for increasing the efficiency of translational neuroscience research through discussions about how and when to use animal models most effectively and then best approaches for the interpretation of the data collected. Specifically, the workshop objectives were to: discuss key issues that contribute to poor translation of animal models in nervous system disorders, examine case studies that highlight successes and failures in the development and application of animal models, consider strategies to increase the scientific rigor of preclinical efficacy testing, explore the benefits and challenges to developing standardized animal and behavioral models. Improving the Utility and Translation of Animal Models for Nervous System Disorders: Workshop Summary also identifies methods to facilitate development of corresponding animal and clinical endpoints, indentifies methods that would maximize bidirectional translation between basic and clinical research and determines the next steps that will be critical for improvement of the development and testing of animal models of disorders of the nervous system.




Preclinical Drug Development


Book Description

Preclinical Drug Development, Second Edition discusses the broad and complicated realm of preclinical drug development. Topics range from assessment of pharmacology and toxicology to industry trends and regulatory expectations to requirements that support clinical trials. Highlights of the Second Edition include: PharmacokineticsModeling and simula




The Changing Economics of Medical Technology


Book Description

Americans praise medical technology for saving lives and improving health. Yet, new technology is often cited as a key factor in skyrocketing medical costs. This volume, second in the Medical Innovation at the Crossroads series, examines how economic incentives for innovation are changing and what that means for the future of health care. Up-to-date with a wide variety of examples and case studies, this book explores how payment, patent, and regulatory policiesâ€"as well as the involvement of numerous government agenciesâ€"affect the introduction and use of new pharmaceuticals, medical devices, and surgical procedures. The volume also includes detailed comparisons of policies and patterns of technological innovation in Western Europe and Japan. This fact-filled and practical book will be of interest to economists, policymakers, health administrators, health care practitioners, and the concerned public.




Preclinical Safety Evaluation of Biopharmaceuticals


Book Description

"The goal is to provide a comprehensive reference book for the preclinicaldiscovery and development scientist whose responsibilities span target identification, lead candidate selection, pharmacokinetics, pharmacology, and toxicology, and for regulatory scientists whose responsibilities include the evaluation of novel therapies." —From the Afterword by Anthony D. Dayan Proper preclinical safety evaluation can improve the predictive value, lessen the time and cost of launching new biopharmaceuticals, and speed potentially lifesaving drugs to market. This guide covers topics ranging from lead candidate selection to establishing proof of concept and toxicity testing to the selection of the first human doses. With chapters contributed by experts in their specific areas, Preclinical Safety Evaluation of Biopharmaceuticals: A Science-Based Approach to Facilitating Clinical Trials: Includes an overview of biopharmaceuticals with information on regulation and methods of production Discusses the principles of ICH S6 and their implementation in the U.S., Europe, and Japan Covers current practices in preclinical development and includes a comparison of safety assessments for small molecules with those for biopharmaceuticals Addresses all aspects of the preclinical evaluation process, including: the selection of relevant species; safety/toxicity endpoints; specific considerations based upon class; and practical considerations in the design, implementation, and analysis of biopharmaceuticals Covers transitioning from preclinical development to clinical trials This is a hands-on, straightforward reference for professionals involved in preclinical drug development, including scientists, toxicologists, project managers, consultants, and regulatory personnel.




Anticancer Drug Development Guide


Book Description

This unique volume traces the critically important pathway by which a "molecule" becomes an "anticancer agent. " The recognition following World War I that the administration of toxic chemicals such as nitrogen mustards in a controlled manner could shrink malignant tumor masses for relatively substantial periods of time gave great impetus to the search for molecules that would be lethal to specific cancer cells. Weare still actively engaged in that search today. The question is how to discover these "anticancer" molecules. Anticancer Drug Development Guide: Preclinical Screening, Clinical Trials, and Approval, Second Edition describes the evolution to the present of preclinical screening methods. The National Cancer Institute's high-throughput, in vitro disease-specific screen with 60 or more human tumor cell lines is used to search for molecules with novel mechanisms of action or activity against specific phenotypes. The Human Tumor Colony-Forming Assay (HTCA) uses fresh tumor biopsies as sources of cells that more nearly resemble the human disease. There is no doubt that the greatest successes of traditional chemotherapy have been in the leukemias and lymphomas. Since the earliest widely used in vivo drug screening models were the murine L 1210 and P388 leukemias, the community came to assume that these murine tumor models were appropriate to the discovery of "antileukemia" agents, but that other tumor models would be needed to discover drugs active against solid tumors.