Predicted Fate of Tritium Residuum from Groundwater Tracer Experiments in the Amargosa Desert, Southern Nevada


Book Description

Analytic solutions are used in this study to evaluate potential groundwater transport of tritium used in goundwater tracer tests southwest of the Nevada Test Site. Possible transport from this site is of interest because initial radionuclide concentrations were high and the site is close to goundwater discharge points (12 km). Anecdotal evidence indicates that 90 percent of these tracers were removed by pumping at the completion of the tests; this study examines the probable transport of the tracers with and without the removal. Classical dispersive transport analytic solutions are used, treating the tracer test as a point slug injection. Input parameters for the solutions were measured at the site, and consideration of parameter uncertainty is incorporated in the results. With removal of the tracer, the maximum expected region with above-Safe Drinking Water Act (40 CFR 121) concentrations of tritium extends 5 km from the injection point, and does not reach any sites of public access. Detectable tritium from the tests is likely to have reached the Ash Meadows fault zone, but flow along the fault probably diluted the tracer to below detection limits before arrival at springs along the fault. Arrival at the springs would have occurred 20 to 25 years after the tests. Without removal of the tracer, the solutions indicate that tritium concentrations just above Safe Drinking Water Act standards would have reached the Ash Meadows fault zone. In this case, detectable tritium might have been found in Devil's Hole or Longstreet Spring, the nearest points of possible public exposure.










Publications of the Water Resources Center


Book Description




Publications of the Water Resources Center


Book Description










Hydrogeology of Morgan Valley, Morgan County, Utah


Book Description

This report characterizes the relationship of geology to groundwater occurrence and flow, with emphasis on determining the thickness of the valley-fill aquifer and water yielding properties of the fractured rock aquifers. Develops a water budget for the drainage basin and classifies the groundwater quality and identifies the likely sources of nitrate in groundwater.




Isotope Methods for Dating Old Groundwater


Book Description

This guidebook provides theoretical and practical information for using a variety of isotope tracers for dating old groundwater, i.e. water stored in geological formations for periods ranging from about 1000 to one million years. Theoretical underpinnings of the methods and guidelines for their use in different hydrogeological environments are described. The guidebook also presents a number of case studies providing insight into how various isotopes have been used in aquifers around the world. The methods, findings and conclusions presented in this publication will enable students and practicing groundwater scientists to evaluate the use of isotope dating tools for specific issues related to the assessment and management of groundwater resources. In addition, the guidebook will be of use to the scientific community interested in issues related to radioactive waste disposal in geological repositories.