Predicting Pandemics in a Globally Connected World, Volume 2


Book Description

In an increasingly globally-connected world, the ability to predict, monitor, and contain pandemics is essential to ensure the health and well-being of all. This contributed volume investigates several mathematical techniques for the modeling and simulation of viral pandemics, with a special focus on COVID-19. Modeling a pandemic requires an interdisciplinary approach with other fields such as epidemiology, virology, immunology, and biology in general. Spatial dynamics and interactions are also important features to be considered, and a multiscale framework is needed at the societal level, the level of individuals, and the level of virus particles and the immune system. Chapters in this volume explore the latest research related to these items to demonstrate the utility of a variety of mathematical methods. Perspectives for the future are also offered




Predicting Pandemics in a Globally Connected World, Volume 1


Book Description

This contributed volume investigates several mathematical techniques for the modeling and simulation of viral pandemics, with a special focus on COVID-19. Modeling a pandemic requires an interdisciplinary approach with other fields such as epidemiology, virology, immunology, and biology in general. Spatial dynamics and interactions are also important features to be considered, and a multiscale framework is needed at the level of individuals and the level of virus particles and the immune system. Chapters in this volume address these items, as well as offer perspectives for the future.




How to Prevent the Next Pandemic


Book Description

Governments, businesses, and individuals around the world are thinking about what happens after the COVID-19 pandemic. Can we hope to not only ward off another COVID-like disaster but also eliminate all respiratory diseases, including the flu? Bill Gates, one of our greatest and most effective thinkers and activists, believes the answer is yes. The author of the #1 New York Times best seller How to Avoid a Climate Disaster lays out clearly and convincingly what the world should have learned from COVID-19 and what all of us can do to ward off another catastrophe like it. Relying on the shared knowledge of the world’s foremost experts and on his own experience of combating fatal diseases through the Gates Foundation, Gates first helps us understand the science of infectious diseases. Then he shows us how the nations of the world, working in conjunction with one another and with the private sector, how we can prevent a new pandemic from killing millions of people and devastating the global economy. Here is a clarion call—strong, comprehensive, and of the gravest importance.




Advances in Numerical Methods for Hyperbolic Balance Laws and Related Problems


Book Description

A broad range of phenomena in science and technology can be described by non-linear partial differential equations characterized by systems of conservation laws with source terms. Well known examples are hyperbolic systems with source terms, kinetic equations, and convection-reaction-diffusion equations. This book collects research advances in numerical methods for hyperbolic balance laws and kinetic equations together with related modelling aspects. All the contributions are based on the talks of the speakers of the Young Researchers’ Conference “Numerical Aspects of Hyperbolic Balance Laws and Related Problems”, hosted at the University of Verona, Italy, in December 2021.




Mathematical Models and Computer Simulations for Biomedical Applications


Book Description

Mathematical modelling and computer simulations are playing a crucial role in the solution of the complex problems arising in the field of biomedical sciences and provide a support to clinical and experimental practices in an interdisciplinary framework. Indeed, the development of mathematical models and efficient numerical simulation tools is of key importance when dealing with such applications. Moreover, since the parameters in biomedical models have peculiar scientific interpretations and their values are often unknown, accurate estimation techniques need to be developed for parameter identification against the measured data of observed phenomena. In the light of the new challenges brought by the biomedical applications, computational mathematics paves the way for the validation of the mathematical models and the investigation of control problems. The volume hosts high-quality selected contributions containing original research results as well as comprehensive papers and survey articles including prospective discussion focusing on some topical biomedical problems. It is addressed, but not limited to: research institutes, academia, and pharmaceutical industries.




Predicting Pandemics in a Globally Connected World, Volume 1


Book Description

This contributed volume investigates several mathematical techniques for the modeling and simulation of viral pandemics, with a special focus on COVID-19. Modeling a pandemic requires an interdisciplinary approach with other fields such as epidemiology, virology, immunology, and biology in general. Spatial dynamics and interactions are also important features to be considered, and a multiscale framework is needed at the level of individuals and the level of virus particles and the immune system. Chapters in this volume address these items, as well as offer perspectives for the future.




Connected Worlds


Book Description







Spillover: Animal Infections and the Next Human Pandemic


Book Description

A masterpiece of science reporting that tracks the animal origins of emerginghuman diseases.