Pressure Broadening of Spectral Lines


Book Description

This is a comprehensive study of the quantum mechanical theory of pressure broadening and its application in atmospheric science.




Collisional Line Broadening and Shifting of Atmospheric Gases


Book Description

This book presents a comprehensive overview of the modern theory of spectral line broadening and shifting by pressure of atmospheric gases. It describes current semi-classical methods for calculating vibrotational line widths and shifts, including very recent modifications and new developments realised by the authors themselves. For most of the considered molecular systems, analytical formulae are also given, which enable the calculation of line broadening coefficients without the use of semi-classical methods. The results of calculations by various approaches are compared with experimental data available in the literature. Numerous appendices list theoretical expressions and parameters' values required for the writing of computer programs for calculation of line broadening and line shifting coefficients.The book is addressed to undergraduate and postgraduate students as well as to professional scientists and researchers working in the field of molecular physics, molecular spectroscopy, quantum chemistry and mathematical physics.




An Introduction to Atmospheric Radiation


Book Description

Fundamentals of radiation for atmospheric applications -- Solar radiation at the top of the atmosphere -- Absorption and scattering of solar radiation in the atmosphere -- Thermal infrared radiation transfer in the atmosphere -- Light scattering by atmospheric particulates -- Principles of radiative transfer in planetary atmospheres -- Application of radiative transfer principles to remote sensing -- Radiation and climate.




Springer Handbook of Atomic, Molecular, and Optical Physics


Book Description

Comprises a comprehensive reference source that unifies the entire fields of atomic molecular and optical (AMO) physics, assembling the principal ideas, techniques and results of the field. 92 chapters written by about 120 authors present the principal ideas, techniques and results of the field, together with a guide to the primary research literature (carefully edited to ensure a uniform coverage and style, with extensive cross-references). Along with a summary of key ideas, techniques, and results, many chapters offer diagrams of apparatus, graphs, and tables of data. From atomic spectroscopy to applications in comets, one finds contributions from over 100 authors, all leaders in their respective disciplines. Substantially updated and expanded since the original 1996 edition, it now contains several entirely new chapters covering current areas of great research interest that barely existed in 1996, such as Bose-Einstein condensation, quantum information, and cosmological variations of the fundamental constants. A fully-searchable CD- ROM version of the contents accompanies the handbook.




Spectroscopy for Amateur Astronomers


Book Description

This accessible guide presents the astrophysical concepts behind astronomical spectroscopy, covering both theoretical and practical elements. Suitable for anyone with only a little background knowledge and access to amateur-level equipment, it will help you understand and practise the scientifically important and growing field of amateur astronomy.




Relative Transition Probability and Pressure Broadening Parameters of Copper Atomic Lines


Book Description

The measured relative intensity ratios for the 5153 and 5106 angstroms copper atomic lines have been performed under optical thin conditions in argon as well as under non-thin conditions in molecular nitrogen and air. These measurements are shown to be in reasonably close accord with the results of Kock and Richter. The observed ratio of line width to line shift was found to be in reasonable accord with Lindholm's theoretical value for van der Waals' forces and in agreement with the ratio measured by Ovechkin and Sandrigailo for the 5106 angstroms copper line in collisions with molecular nitrogen. (Author).




Laser Fundamentals


Book Description

Laser Fundamentals provides a clear and comprehensive introduction to the physical and engineering principles of laser operation and design. Simple explanations, based throughout on key underlying concepts, lead the reader logically from the basics of laser action to advanced topics in laser physics and engineering. Much new material has been added to this second edition, especially in the areas of solid-state lasers, semiconductor lasers, and laser cavities. This 2004 edition contains a new chapter on laser operation above threshold, including extensive discussion of laser amplifiers. The clear explanations, worked examples, and many homework problems will make this book invaluable to undergraduate and first-year graduate students in science and engineering taking courses on lasers. The summaries of key types of lasers, the use of many unique theoretical descriptions, and the extensive bibliography will also make this a valuable reference work for researchers.




Spectral Line Broadening by Plasmas


Book Description

Spectral Line Broadening by Plasmas deals with spectral line broadening by plasmas and covers topics ranging from quasi-static approximation and impact approximation to intermediate approximations and correlation effects. Experimental results for hydrogen lines, lines with forbidden components, and ionized helium lines are presented. Applications such as density and temperature measurements are also considered. Comprised of four chapters, this volume begins with an overview of the effects of electric fields from electrons and ions (both acting as point charges) on spectral line shapes. The next chapter surveys theoretical work, paying particular attention to quasi-static, impact, and intermediate approximations as well as correlation effects. Stark broadening experiments are then discussed, with special emphasis on experiments capable of checking the accuracy or validity limits of the various approximations. The final chapter is devoted to applications in laboratory plasma physics and astronomy, focusing on density and temperature measurements and opacity calculations as well as the analysis of stellar atmospheres, amplitudes and spectra of plasma waves, and radio frequency lines. This book should appeal to students, practitioners, and researchers in pure and applied physics.




Spectral Line Formation


Book Description

The purpose of this book is to discuss certain aspects of the theory of the formation and analysis of the line spectrum of a hot gas. The underlying motivation for most of the studies discussed here lies in a desire to develop a physically sound procedure for interpreting the line spectrum of a stellar atmosphere ; correspondingly, the major emphasis is given to problems encountered in astrophysics.




Tunable Lasers Handbook


Book Description

Many laser applications depend on the ability of a particular laser to be frequency tunable. Among the many different types of frequency tunable lasers are: dye lasers, excimer lasers, and semiconductor lasers. Thisbook gives active researchers and engineers the practical information they need to choose an appropriate tunable laser for their particular applications. - Presents a unified and integrated perspective on tunable lasers - Includes sources spanning the electromagnetic spectrum from the UV to the FIR - Contains 182 figures and 68 tables - Provides coverage of optical parametric oscillators and tunable gas, liquid, solid state, and semiconductor lasers