Pressure Swing Adsorption


Book Description

Pressure Swing Adsorption is the first book that provides a coherent and concise summary of the underlying science and technology of pressure swing adsorption (PSA) processes at a level understandable to the practising engineer. PSA has achieved widespread commercial acceptance as the technology of choice for hydrogen purification, air separation and small scale air driers. However, PSA has numerous other actual and potential uses such as the recovery of methane from landfill gas, the production of carbon dioxide and other large scale applications. Since the design and optimization of a PSA process requires a somewhat mathematical model, two chapters of the book provide in-depth information on equilibrium theory and dynamic numerical simulation. However, this mathematical material will also help the general reader develop an understanding of the principles and strenghts and limitations of various approaches. PSA engineers, chemical engineers, environmental chemists, academicians and managers who must make informed decisions about purchasing costly PSA systems will find Pressure Swing Adsorption of particular value.




Pressure Swing Adsorption


Book Description




Pressure Swing Adsorption


Book Description




Adsorption


Book Description

Adsorption is the basis of various emerging technologies that will be essential for addressing the problems of technologies that will be essential for addressing the problems of energy conservation and environmental protection.This volume reviews recent progress and outlines the outlook for future development in adsorption theories, kinetics, pressure swing adsorption, SMB, and new nanoporous adsorbents. The contributions cover the fundamental knowledge and methodologies for adsorption experiments and calculations regarding equilibria, heat effects, adsorbent structural modeling, diffusion measurement, and selectivity control.The volume also includes topics concerning hydrogen storage, desulfurization of fuels, and chiral separation. The contributors are internationally renowned scholars in the field of adsorption.




Separation and Purification Technologies in Biorefineries


Book Description

Separation and purification processes play a critical role in biorefineries and their optimal selection, design and operation to maximise product yields and improve overall process efficiency. Separations and purifications are necessary for upstream processes as well as in maximising and improving product recovery in downstream processes. These processes account for a significant fraction of the total capital and operating costs and also are highly energy intensive. Consequently, a better understanding of separation and purification processes, current and possible alternative and novel advanced methods is essential for achieving the overall techno-economic feasibility and commercial success of sustainable biorefineries. This book presents a comprehensive overview focused specifically on the present state, future challenges and opportunities for separation and purification methods and technologies in biorefineries. Topics covered include: Equilibrium Separations: Distillation, liquid-liquid extraction and supercritical fluid extraction. Affinity-Based Separations: Adsorption, ion exchange, and simulated moving bed technologies. Membrane Based Separations: Microfiltration, ultrafiltration and diafiltration, nanofiltration, membrane pervaporation, and membrane distillation. Solid-liquid Separations: Conventional filtration and solid-liquid extraction. Hybrid/Integrated Reaction-Separation Systems: Membrane bioreactors, extractive fermentation, reactive distillation and reactive absorption. For each of these processes, the fundamental principles and design aspects are presented, followed by a detailed discussion and specific examples of applications in biorefineries. Each chapter also considers the market needs, industrial challenges, future opportunities, and economic importance of the separation and purification methods. The book concludes with a series of detailed case studies including cellulosic bioethanol production, extraction of algae oil from microalgae, and production of biopolymers. Separation and Purification Technologies in Biorefineries is an essential resource for scientists and engineers, as well as researchers and academics working in the broader conventional and emerging bio-based products industry, including biomaterials, biochemicals, biofuels and bioenergy.




Hydrogen and Syngas Production and Purification Technologies


Book Description

Covers the timely topic of fuel cells and hydrogen-based energy from its fundamentals to practical applications Serves as a resource for practicing researchers and as a text in graduate-level programs Tackles crucial aspects in light of the new directions in the energy industry, in particular how to integrate fuel processing into contemporary systems like nuclear and gas power plants Includes homework-style problems




Gas Separation by Adsorption Processes


Book Description

Gas Separation by Adsorption Processes provides a thorough discussion of the advancement in gas adsorption process. The book is comprised of eight chapters that emphasize the fundamentals concept and principles. The text first covers the adsorbents and adsorption isotherms, and then proceeds to detailing the equilibrium adsorption of gas mixtures. Next, the book covers rate processes in adsorbers and adsorber dynamics. The next chapter discusses cyclic gas separation processes, and the remaining two chapters cover pressure-swing adsorption. The book will be of great use to students, researchers, and practitioners of disciplines that involve gas separation processes, such as chemical engineering.




Hydrogen Science and Engineering, 2 Volume Set


Book Description

Authored by 50 top academic, government and industry researchers, this handbook explores mature, evolving technologies for a clean, economically viable alternative to non-renewable energy. In so doing, it also discusses such broader topics as the environmental impact, education, safety and regulatory developments. The text is all-encompassing, covering a wide range that includes hydrogen as an energy carrier, hydrogen for storage of renewable energy, and incorporating hydrogen technologies into existing technologies.




Design, Simulation and Optimization of Adsorptive and Chromatographic Separations: A Hands-On Approach


Book Description

A comprehensive resource to the construction, use, and modification of the wide variety of adsorptive and chromatographic separations Design, Simulation and Optimization of Adsorptive and Chromatographic Separations offers the information needed to effectively design, simulate, and optimize adsorptive and chromatographic separations for a wide range of industrial applications. The authors?noted experts in the field?cover the fundamental principles, the applications, and a range of modeling techniques for the processes. The text presents a unified approach that includes the ideal and intermediate equations and offers a wealth of hands-on case studies that employ the rigorous simulation packages Aspen Adsorption and Aspen Chromatography. The text reviews the effective design strategies, details design considerations, and the assumptions which the modelers are allowed to make. The authors also cover shortcut design methods as well as mathematical tools that help to determine optimal operating conditions. This important text: -Covers everything from the underlying pheonmena to model optimization and the customization of model code -Includes practical tutorials that allow for independent review and study -Offers a comprehensive review of the construction, use, and modification of the wide variety of adsorptive and chromatographic separations -Contains contributions from three noted experts in the field Written for chromatographers, process engineers, ehemists, and other professionals, Design, Simulation and Optimization of Adsorptive and Chromatographic Separations offers a comprehensive review of the construction, use, and modification of adsorptive and chromatographic separations.




Process Systems and Materials for CO2 Capture


Book Description

This comprehensive volume brings together an extensive collection of systematic computer-aided tools and methods developed in recent years for CO2 capture applications, and presents a structured and organized account of works from internationally acknowledged scientists and engineers, through: Modeling of materials and processes based on chemical and physical principles Design of materials and processes based on systematic optimization methods Utilization of advanced control and integration methods in process and plant-wide operations The tools and methods described are illustrated through case studies on materials such as solvents, adsorbents, and membranes, and on processes such as absorption / desorption, pressure and vacuum swing adsorption, membranes, oxycombustion, solid looping, etc. Process Systems and Materials for CO2 Capture: Modelling, Design, Control and Integration should become the essential introductory resource for researchers and industrial practitioners in the field of CO2 capture technology who wish to explore developments in computer-aided tools and methods. In addition, it aims to introduce CO2 capture technologies to process systems engineers working in the development of general computational tools and methods by highlighting opportunities for new developments to address the needs and challenges in CO2 capture technologies.