Pressure Vessel Design Manual


Book Description

Pressure vessels are closed containers designed to hold gases or liquids at a pressure substantially different from the ambient pressure. They have a variety of applications in industry, including in oil refineries, nuclear reactors, vehicle airbrake reservoirs, and more. The pressure differential with such vessels is dangerous, and due to the risk of accident and fatality around their use, the design, manufacture, operation and inspection of pressure vessels is regulated by engineering authorities and guided by legal codes and standards. Pressure Vessel Design Manual is a solutions-focused guide to the many problems and technical challenges involved in the design of pressure vessels to match stringent standards and codes. It brings together otherwise scattered information and explanations into one easy-to-use resource to minimize research and take readers from problem to solution in the most direct manner possible. - Covers almost all problems that a working pressure vessel designer can expect to face, with 50+ step-by-step design procedures including a wealth of equations, explanations and data - Internationally recognized, widely referenced and trusted, with 20+ years of use in over 30 countries making it an accepted industry standard guide - Now revised with up-to-date ASME, ASCE and API regulatory code information, and dual unit coverage for increased ease of international use




Pressure Vessel Design: The Direct Route


Book Description

This book explores a new, economically viable approach to pressure vessel design, included in the (harmonized) standard EN 13445 (for unfired pressure vessels) and based on linear as well as non-linear Finite Element analyses. It is intended as a supporting reference of this standard's route, providing background information on the underlying principles, basic ideas, presuppositions, and new notions. Examples are included to familiarize readers with this approach, to highlight problems and solutions, advantages and disadvantages.* The only book with background information on the direct route in pressure vessel design. * Contains many worked examples, supporting figures and tables and a comprehensive glossary of terms.




Pressure Vessel Design


Book Description

This book derives from a 3 day intensive course on Pressure Vessel Design given regularly in the UK and around the world since 1986. It is written by experts in their field and although the main thrust of the Course has been directed to BS5500, the treatment of the material is of a general nature thus providing insight into other national standards




Pressure Vessel Design Handbook


Book Description

A practical handbook, this second edition of a successful guide will prove itself valuable on a daily basis with its reliable and up to date facts and figures. The intent is to increase the reader's design efficiency with numerous design shortcuts, derivations of established design procedures, and new design techniques. Time-saving formulas, calculations, examples, and solutions to design problems appear throught.




Pressure Vessel Handbook


Book Description




Theory and Design of Pressure Vessels


Book Description

This revised best-seller covers the latest ways to analyse different stresses, and create vessels that can survive fatigue, shock, high pressure, high temperature, irradiation, corrosion, and other hostile environments.




Pressure Vessels


Book Description

With very few books adequately addressing ASME Boiler & Pressure Vessel Code, and other international code issues, Pressure Vessels: Design and Practice provides a comprehensive, in-depth guide on everything engineers need to know. With emphasis on the requirements of the ASME this consummate work examines the design of pressure vessel com




Design of Pressure Vessels


Book Description

Simplifies pressure vessels design based on the current ASME codes Explains design topics of non-coded parts to calculate the stresses for any type of arrangement Covers failure analysis related to elements of pressure vessels Provides backend of design software and codes useful to designers Describes the equations by simple fundamental design methods and calculations required for preparing manufacturing drawings




Mechanical Design of Heat Exchangers


Book Description

A tubular heat exchanger exemplifies many aspects of the challenge in designing a pressure vessel. High or very low operating pressures and temperatures, combined with sharp temperature gradients, and large differences in the stiffnesses of adjoining parts, are amongst the legion of conditions that behoove the attention of the heat exchanger designer. Pitfalls in mechanical design may lead to a variety of operational problems, such as tube-to-tubesheet joint failure, flanged joint leakage, weld cracks, tube buckling, and flow induced vibration. Internal failures, such as pass partition bowing or weld rip-out, pass partition gasket rib blow-out, and impingement actuated tube end erosion are no less menacing. Designing to avoid such operational perils requires a thorough grounding in several disciplines of mechanics, and a broad understanding of the inter relationship between the thermal and mechanical performance of heat exchangers. Yet, while there are a number of excellent books on heat ex changer thermal design, comparable effort in mechanical design has been non-existent. This apparent void has been filled by an assortment of national codes and industry standards, notably the "ASME Boiler and Pressure Vessel Code" and the "Standards of Tubular Exchanger Manufacturers Association. " These documents, in conjunction with scattered publications, form the motley compendia of the heat exchanger designer's reference source. The subject matter clearly beckons a methodical and comprehensive treatment. This book is directed towards meeting this need.




Pressure Vessel Design Manual


Book Description

This edition covers every major aspect of pressure vessel design and provides up-to-date requirements given in ASME, ASCE, UBC, and AISC codes. The well-respected manual offers page after page of fully illustrated, step-by-step procedures. Many of the 45 design procedures have been updated and expanded to: - Incorporate the broadest range of design cases - Provide the maximum flexibility - Supply more detail - Handle a greater variety of problems