Polymer Physics


Book Description

Providing a comprehensive review of the state-of-the-art advanced research in the field, Polymer Physics explores the interrelationships among polymer structure, morphology, and physical and mechanical behavior. Featuring contributions from renowned experts, the book covers the basics of important areas in polymer physics while projecting into the future, making it a valuable resource for students and chemists, chemical engineers, materials scientists, and polymer scientists as well as professionals in related industries.







The Physics of Glassy Polymers


Book Description

This work sets out to provide an up-to-date account of the physical properties and structure of polymers in the glassy state. Properties measured above the glass transition temperature are therefore included only in so far as is necessary for the treatment of the glass transition process. This approach to the subject therefore excludes any detailed account of rubber elasticity or melt rheology or of the structure and conformation of the long chain molecule in solution, although knowledge derived from this field is assumed where required. Major emphasis is placed on structural and mechanical properties, although a number of other physical properties are included. Naturally the different authors contributing to the book write mainly from their own particular points of view and where there are several widely accepted theoretical approaches to a subject, these are sometimes provided in different chapters which will necessarily overlap to a significant extent. For example, the main theoretical presentation on the subject of glass transition is given in Chapter 1. This is supplemented by accounts of the free volume theory in Chapter 3 and in the Introduction, and a short account of the work of Gibbs and DiMarzio, also in Chapter 3. Similarly, there is material on solvent cracking in Chapters 7 and 9, though the two workers approach the subject from opposite directions. Every effort has therefore been made to encourage cross-referencing between different chapters.







Properties and Behavior of Polymers, 2 Volume Set


Book Description

The book provides comprehensive, up-to-date information on the physical properties of polymers including, viscoelasticity, flammability, miscibility, optical properties, surface properties and more. Containing carefully selected reprints from the Wiley's renowned Encyclopedia of Polymer Science and Technology, this reference features the same breadth and quality of coverage and clarity of presentation found in the original.




Physical Properties of Polymers Handbook


Book Description

This book offers concise information on the properties of polymeric materials, particularly those most relevant to physical chemistry and chemical physics. Extensive updates and revisions to each chapter include eleven new chapters on novel polymeric structures, reinforcing phases in polymers, and experiments on single polymer chains. The study of complex materials is highly interdisciplinary, and new findings are scattered among a large selection of scientific and engineering journals. This book brings together data from experts in the different disciplines contributing to the rapidly growing area of polymers and complex materials.




Microengineering of Metals and Ceramics, Part I


Book Description

Microstructures, electronics, nanotechnology - these vast fields of research are growing together as the size gap narrows and many different materials are combined. Current research, engineering sucesses and newly commercialized products hint at the immense innovative potentials and future applications that open up once mankind controls shape and function from the atomic level right up to the visible world without any gaps. In this volume, authors from three major competence centres for microengineering illustrate step by step the process from designing and simulating microcomponents of metallic and ceramic materials to replicating micro-scale components by injection molding.




Journal of Rheology


Book Description

Includes abstracts from the Journal of the Society of Rheology, Japan.




Polymer Glasses


Book Description

"the present book will be of great value for both newcomers to the field and mature active researchers by serving as a coherent and timely introduction to some of the modern approaches, ideas, results, emerging understanding, and many open questions in this fascinating field of polymer glasses, supercooled liquids, and thin films" –Kenneth S. Schweizer, Morris Professor of Materials Science & Engineering, University of Illinois at Urbana-Champaign (from the Foreword) This book provides a timely and comprehensive overview of molecular level insights into polymer glasses in confined geometries and under deformation. Polymer glasses have become ubiquitous to our daily life, from the polycarbonate eyeglass lenses on the end of our nose to large acrylic glass panes holding water in aquarium tanks, with advantages over glass in that they are lightweight and easy to manufacture, while remaining transparent and rigid. The contents include an introduction to the field, as well as state of the art investigations. Chapters delve into studies of commonalities across different types of glass formers (polymers, small molecules, colloids, and granular materials), which have enabled microscopic and molecular level frameworks to be developed. The authors show how glass formers are modeled across different systems, thereby leading to treatments for polymer glasses with first-principle based approaches and molecular level detail. Readers across disciplines will benefit from this topical overview summarizing the key areas of polymer glasses, alongside an introduction to the main principles and approaches.