Drinking Water Distribution Systems


Book Description

Protecting and maintaining water distributions systems is crucial to ensuring high quality drinking water. Distribution systems-consisting of pipes, pumps, valves, storage tanks, reservoirs, meters, fittings, and other hydraulic appurtenances-carry drinking water from a centralized treatment plant or well supplies to consumers' taps. Spanning almost 1 million miles in the United States, distribution systems represent the vast majority of physical infrastructure for water supplies, and thus constitute the primary management challenge from both an operational and public health standpoint. Recent data on waterborne disease outbreaks suggest that distribution systems remain a source of contamination that has yet to be fully addressed. This report evaluates approaches for risk characterization and recent data, and it identifies a variety of strategies that could be considered to reduce the risks posed by water-quality deteriorating events in distribution systems. Particular attention is given to backflow events via cross connections, the potential for contamination of the distribution system during construction and repair activities, maintenance of storage facilities, and the role of premise plumbing in public health risk. The report also identifies advances in detection, monitoring and modeling, analytical methods, and research and development opportunities that will enable the water supply industry to further reduce risks associated with drinking water distribution systems.




Management of Legionella in Water Systems


Book Description

Legionnaires' disease, a pneumonia caused by the Legionella bacterium, is the leading cause of reported waterborne disease outbreaks in the United States. Legionella occur naturally in water from many different environmental sources, but grow rapidly in the warm, stagnant conditions that can be found in engineered water systems such as cooling towers, building plumbing, and hot tubs. Humans are primarily exposed to Legionella through inhalation of contaminated aerosols into the respiratory system. Legionnaires' disease can be fatal, with between 3 and 33 percent of Legionella infections leading to death, and studies show the incidence of Legionnaires' disease in the United States increased five-fold from 2000 to 2017. Management of Legionella in Water Systems reviews the state of science on Legionella contamination of water systems, specifically the ecology and diagnosis. This report explores the process of transmission via water systems, quantification, prevention and control, and policy and training issues that affect the incidence of Legionnaires' disease. It also analyzes existing knowledge gaps and recommends research priorities moving forward.




Microbial Growth in Drinking Water Supplies


Book Description

Maintaining the microbial quality in distribution systems and connected installations remains a challenge for the water supply companies all over the world, despite many years of research. This book identifies the main concerns and knowledge gaps related to regrowth and stimulates cooperation in future research. Microbial Growth in Drinking Water Supplies provides an overview of the regrowth issue in different countries and the water quality problems related to regrowth. The book assesses the causes of regrowth in drinking water and the prevention of regrowth by water treatment and distribution. Editors: Dirk van der Kooij and Paul W.J.J. van der Wielen, KWR Watercycle Research Institute, The Netherlands




Heterotrophic Plate Counts and Drinking-water Safety


Book Description

Heterotrophic Plate Counts and Drinking-water Safety provides a critical assessment of the role of the Heterotrophic Plate Count (HPC) measurement in drinking water quality management. It was developed from an Expert workshop of 32 scientists convened by the World Health Organization and the WHO/NSF International Collaborating Centre for Drinking Water Safety and Treatment in Geneva, Switzerland. Heterotrophs are organisms, including bacteria, yeasts and moulds, that require an external source of organic carbon for growth. The HPC test (or Standard Plate Count), applied in many variants, is the internationally accepted test for measuring the hetrotrophic microorganism population in drinking water, and also other media. It measures only a fraction of the microorganisms actually present and does not distinguish between pathogens and non-pathogens. High levels of microbial growth can affect the taste and odor of drinking water and may indicate the presence of nutrients and biofilms which could harbor pathogens, as well as the possibility that some event has interfered with the normal production of the drinking water. HPC counts also routinely increase in water that has been treated by an in-line device such as a carbon filter or softener, in water-dispensing devices and in bottled waters and indeed in all water that has suitable nutrients, does not have a residual disinfectant, and is kept under sufficient conditions. There is debate among health professionals as to the need, utility or quantitative basis for health-based standards or guidelines relating to HPC-measured regrowth in drinking water. The issues that were addressed in this work include: the relationship between HPC in drinking water (including that derived from in-line treatment systems, dispensers and bottled water) and health risks for the general public the role of HPC as an indirect indicator or index for pathogens of concern in drinking water the role of HPC in assessing the efficacy and proper functioning of water treatment and supply processes the relationship between HPC and the aesthetic acceptability of drinking water. Heterotrophic Plate Counts and Drinking-water Safety provides valuable information on the utility and the limitations of HPC data in the management and operation of piped water systems as well as other means of providing drinking water to the public. It is of particular value to piped public water suppliers and bottled water suppliers, manufacturers and users of water treatment and transmission equipment and inline treatment devices, water engineers, sanitary and clinical microbiologists, and national and local public health officials and regulators of drinking water quality.




Biofilms - Science and Technology


Book Description

Biofilms -- Science and Technology covers the main topics of biofilm formation and activity, from basic science to applied aspects in engineering and medicine. The book presents a masterly discussion of microbial adhesion, the metabolism of microorganisms in biofilms, modelling of mass transfer and biological reaction within biofilms, as well as the behaviour of these microbial communities in industry (waste water treatment, heat exchanger biofouling, membranes, food processing) and in medicine (teeth, implants, prosthetic devices). Laboratory techniques and industrial monitoring methods are also presented. The book is directed at readers at the postgraduate level and is organised as a textbook, containing 11 chapters, a glossary, and a detailed subject index.




Drinking Water Microbiology


Book Description

The microbiology of drinking water remains an important worldwide concern despite modem progress in science and engineering. Countries that are more technologically advanced have experienced a significant reduction in water borne morbidity within the last 100 years: This reduction has been achieved through the application of effective technologies for the treatment, disinfec tion, and distribution of potable water. However, morbidity resulting from the ingestion of contaminated water persists globally, and the available ep idemiological evidence (Waterborne Diseases in the United States, G. F. Craun, ed. , 1986, CRC Press) demonstrates a dramatic increase in the number of waterborne outbreaks and individual cases within the United States since the mid-1960s. In addition, it should also be noted that the incidence of water borne outbreaks of unknown etiology and those caused by "new" pathogens, such as Campylobaeter sp. , is also increasing in the United States. Although it might be debated whether these increases are real or an artifact resulting from more efficient reporting, it is clear that waterborne morbidity cannot be ignored in the industrialized world. More significantly, it represents one of the most important causes of illness within developing countries. Approxi mately one-half the world's population experiences diseases that are the direct consequence of drinking polluted water. Such illnesses are the primary cause of infant mortality in many Third World countries.




Recent Trends in Biofilm Science and Technology


Book Description

Recent Trends in Biofilm Science and Technology helps researchers working on fundamental aspects of biofilm formation and control conduct biofilm studies and interpret results. The book provides a remarkable amount of knowledge on the processes that regulate biofilm formation, the methods used, monitoring characterization and mathematical modeling, the problems/advantages caused by their presence in the food industry, environment and medical fields, and the current and emergent strategies for their control. Research on biofilms has progressed rapidly in the last decade due to the fact that biofilms have required the development of new analytical tools and new collaborations between biologists, engineers and mathematicians. - Presents an overview of the process of biofilm formation and its implications - Provides a clearer understanding of the role of biofilms in infections - Creates a foundation for further research on novel control strategies - Updates readers on the remarkable amount of knowledge on the processes that regulate biofilm formation




Guidelines for Drinking-water Quality


Book Description

This volume describes the methods used in the surveillance of drinking water quality in the light of the special problems of small-community supplies, particularly in developing countries, and outlines the strategies necessary to ensure that surveillance is effective.




Water Treatment and Pathogen Control


Book Description

Annotation This publication provides a critical analysis of the literature on removal and inactivation of pathogenic microbes in water to aid the water quality specialist and design engineer in making decisions regarding microbial water quality.




Indicators for Waterborne Pathogens


Book Description

Recent and forecasted advances in microbiology, molecular biology, and analytical chemistry have made it timely to reassess the current paradigm of relying predominantly or exclusively on traditional bacterial indicators for all types of waterborne pathogens. Nonetheless, indicator approaches will still be required for the foreseeable future because it is not practical or feasible to monitor for the complete spectrum of microorganisms that may occur in water, and many known pathogens are difficult to detect directly and reliably in water samples. This comprehensive report recommends the development and use of a "tool box" approach by the U.S Environmental Protection Agency and others for assessing microbial water quality in which available indicator organisms (and/or pathogens in some cases) and detection method(s) are matched to the requirements of a particular application. The report further recommends the use of a phased, three-level monitoring framework to support the selection of indicators and indicator approaches.Â