Principal-Investigator-Led Missions in the Space Sciences


Book Description

Principal Investigator-Led (PI-led) missions are an important element of NASA's space science enterprise. While several NRC studies have considered aspects of PI-led missions in the course of other studies for NASA, issues facing the PI-led missions in general have not been subject to much analysis in those studies. Nevertheless, these issues are raising increasingly important questions for NASA, and it requested the NRC to explore them as they currently affect PI-led missions. Among the issues NASA asked to have examined were those concerning cost and scheduling, the selection process, relationships among PI-led team members, and opportunities for knowledge transfer to new PIs. This report provides a discussion of the evolution and current status of the PIled mission concept, the ways in which certain practices have affected its performance, and the steps that can carry it successfully into the future. The study was done in collaboration with the National Academy of Public Administration.




Principal Investigator-led Missions in Space Science


Book Description

"More than a decade ago, NASA decided to undertake an experiment that would place the principal scientific investigator in a leadership position for the life cycle of a space science mission, beginning with the initial proposal and concluding with the final scientific data analysis and publication of results. NASA asked the National Research Council and the National Academy of Public Administration to conduct an independent review of the principal investigator-led missions. The Academy's study analyzed the causes for increased mission costs and made recommendations to reduce the likelihood of cost growth in future missions."--Foreword.




Steps to Facilitate Principal-Investigator-Led Earth Science Missions


Book Description

Principal-investigator (PI) Earth science missions are small, focused science projects involving relatively small spacecraft. The selected PI is responsible for the scientific and programmatic success of the entire project. A particular objective of PI-led missions has been to help develop university-based research capacity. Such missions, however, pose significant challenges that are beyond the capabilities of most universities to manage. To help NASA's Office of Earth Science determine how best to address these, the NRC carried out an assessment of key issues relevant to the success of university-based PI-led Earth observation missions. This report presents the result of that study. In particular, the report provides an analysis of opportunities to enhance such missions and recommendations about whether and, if so, how they should be used to build university-based research capabilities.




Steps to Facilitate Principal-Investigator-Led Earth Science Missions


Book Description

Principal-investigator (PI) Earth science missions are small, focused science projects involving relatively small spacecraft. The selected PI is responsible for the scientific and programmatic success of the entire project. A particular objective of PI-led missions has been to help develop university-based research capacity. Such missions, however, pose significant challenges that are beyond the capabilities of most universities to manage. To help NASA's Office of Earth Science determine how best to address these, the NRC carried out an assessment of key issues relevant to the success of university-based PI-led Earth observation missions. This report presents the result of that study. In particular, the report provides an analysis of opportunities to enhance such missions and recommendations about whether and, if so, how they should be used to build university-based research capabilities.










Assessment of Impediments to Interagency Collaboration on Space and Earth Science Missions


Book Description

Through an examination of case studies, agency briefings, and existing reports, and drawing on personal knowledge and direct experience, the Committee on Assessment of Impediments to Interagency Cooperation on Space and Earth Science Missions found that candidate projects for multiagency collaboration in the development and implementation of Earth-observing or space science missions are often intrinsically complex and, therefore costly, and that a multiagency approach to developing these missions typically results in additional complexity and cost. Advocates of collaboration have sometimes underestimated the difficulties and associated costs and risks of dividing responsibility and accountability between two or more partners; they also discount the possibility that collaboration will increase the risk in meeting performance objectives. This committee's principal recommendation is that agencies should conduct Earth and space science projects independently unless: It is judged that cooperation will result in significant added scientific value to the project over what could be achieved by a single agency alone; or Unique capabilities reside within one agency that are necessary for the mission success of a project managed by another agency; or The project is intended to transfer from research to operations necessitating a change in responsibility from one agency to another during the project; or There are other compelling reasons to pursue collaboration, for example, a desire to build capacity at one of the cooperating agencies. Even when the total project cost may increase, parties may still find collaboration attractive if their share of a mission is more affordable than funding it alone. In these cases, alternatives to interdependent reliance on another government agency should be considered. For example, agencies may find that buying services from another agency or pursuing interagency coordination of spaceflight data collection is preferable to fully interdependent cooperation.




Space Studies Board Annual Report 2014


Book Description

The original charter of the Space Science Board was established in June 1958, 3 months before the National Aeronautics and Space Administration (NASA) opened its doors. The Space Science Board and its successor, the Space Studies Board (SSB), have provided expert external and independent scientific and programmatic advice to NASA on a continuous basis from NASA's inception until the present. The SSB has also provided such advice to other executive branch agencies, including the National Oceanic and Atmospheric Administration (NOAA), the National Science Foundation (NSF), the U.S. Geological Survey (USGS), the Department of Defense, as well as to Congress. Space Studies Board Annual Report 2014 covers a message from the chair of the SSB, David N. Spergel. This report also explains the origins of the Space Science Board, how the Space Studies Board functions today, the SSB's collaboration with other National Research Council units, assures the quality of the SSB reports, acknowledges the audience and sponsors, and expresses the necessity to enhance the outreach and improve dissemination of SSB reports. This report will be relevant to a full range of government audiences in civilian space research - including NASA, NSF, NOAA, USGS, and the Department of Energy, as well members of the SSB, policy makers, and researchers.




Space Studies Board Annual Report 2017


Book Description

The original charter of the Space Science Board was established in June 1958, three months before the National Aeronautics and Space Administration (NASA) opened its doors. The Space Science Board and its successor, the Space Studies Board (SSB), have provided expert external and independent scientific and programmatic advice to NASA on a continuous basis from NASA's inception until the present. The SSB has also provided such advice to other executive branch agencies, including the National Oceanic and Atmospheric Administration (NOAA), the National Science Foundation (NSF), the U.S. Geological Survey (USGS), the Department of Defense, as well as to Congress. Space Studies Board Annual Report 2017 covers a message from the chair of the SSB, David N. Spergel. This report also explains the origins of the Space Science Board, how the Space Studies Board functions today, the SSB's collaboration with other National Academies of Sciences, Engineering, and Medicine units, assures the quality of the SSB reports, acknowledges the audience and sponsors, and expresses the necessity to enhance the outreach and improve dissemination of SSB reports. This report will be relevant to a full range of government audiences in civilian space research - including NASA, NSF, NOAA, USGS, and the Department of Energy, as well members of the SSB, policy makers, and researchers.




Powering Science


Book Description

NASA's Science Mission Directorate (SMD) currently operates over five dozen missions, with approximately two dozen additional missions in development. These missions span the scientific fields associated with SMD's four divisionsâ€"Astrophysics, Earth Science, Heliophysics, and Planetary Sciences. Because a single mission can consist of multiple spacecraft, NASA-SMD is responsible for nearly 100 operational spacecraft. The most high profile of these are the large strategic missions, often referred to as "flagships." Large strategic missions are essential to maintaining the global leadership of the United States in space exploration and in science because only the United States has the budget, technology, and trained personnel in multiple scientific fields to conduct missions that attract a range of international partners. This report examines the role of large, strategic missions within a balanced program across NASA-SMD space and Earth sciences programs. It considers the role and scientific productivity of such missions in advancing science, technology and the long-term health of the field, and provides guidance that NASA can use to help set the priority of larger missions within a properly balanced program containing a range of mission classes.