Propensity Score Analysis


Book Description

This book is designed to help researchers better design and analyze observational data from quasi-experimental studies and improve the validity of research on causal claims. It provides clear guidance on the use of different propensity score analysis (PSA) methods, from the fundamentals to complex, cutting-edge techniques. Experts in the field introduce underlying concepts and current issues and review relevant software programs for PSA. The book addresses the steps in propensity score estimation, including the use of generalized boosted models, how to identify which matching methods work best with specific types of data, and the evaluation of balance results on key background covariates after matching. Also covered are applications of PSA with complex data, working with missing data, controlling for unobserved confounding, and the extension of PSA to prognostic score analysis for causal inference. User-friendly features include statistical program codes and application examples. Data and software code for the examples are available at the companion website (www.guilford.com/pan-materials).




Propensity Score Analysis


Book Description

Provides readers with a systematic review of the origins, history, and statistical foundations of Propensity Score Analysis (PSA) and illustrates how it can be used for solving evaluation and causal-inference problems.




Using Propensity Scores in Quasi-Experimental Designs


Book Description

Using Propensity Scores in Quasi-Experimental Designs, by William M. Holmes, examines how propensity scores can be used to reduce bias with different kinds of quasi-experimental designs and to fix or improve broken experiments. Requiring minimal use of matrix and vector algebra, the book covers the causal assumptions of propensity score estimates and their many uses, linking these uses with analysis appropriate for different designs. Thorough coverage of bias assessment, propensity score estimation, and estimate improvement is provided, along with graphical and statistical methods for this process. Applications are included for analysis of variance and covariance, maximum likelihood and logistic regression, two-stage least squares, generalized linear regression, and general estimation equations. The examples use public data sets that have policy and programmatic relevance across a variety of disciplines.




Philosophy of Biology


Book Description

Philosophy of Biology is a rapidly expanding field. It is concerned with explanatory concepts in evolution, genetics, and ecology. This collection of 25 essays by leading researchers provides an overview of the state of the field. These essays are wholly new; none of them could have been written even ten years ago. They demonstrate how philosophical analysis has been able to contribute to sometimes contested areas of scientific theory making.-Written by internationally acknowledged leaders in the field- Entries make original contributions as well as summarizing state of the art discoveries in the field- Easy to read and understand




Probabilities, Causes and Propensities in Physics


Book Description

This volume defends a novel approach to the philosophy of physics: it is the first book devoted to a comparative study of probability, causality, and propensity, and their various interrelations, within the context of contemporary physics -- particularly quantum and statistical physics. The philosophical debates and distinctions are firmly grounded upon examples from actual physics, thus exemplifying a robustly empiricist approach. The essays, by both prominent scholars in the field and promising young researchers, constitute a pioneer effort in bringing out the connections between probabilistic, causal and dispositional aspects of the quantum domain. The book will appeal to specialists in philosophy and foundations of physics, philosophy of science in general, metaphysics, ontology of physics theories, and philosophy of probability.




Philosophical Theories of Probability


Book Description

The Twentieth Century has seen a dramatic rise in the use of probability and statistics in almost all fields of research. This has stimulated many new philosophical ideas on probability. Philosophical Theories of Probability is the first book to present a clear, comprehensive and systematic account of these various theories and to explain how they relate to one another. Gillies also offers a distinctive version of the propensity theory of probability, and the intersubjective interpretation, which develops the subjective theory.




Matched Sampling for Causal Effects


Book Description

Matched sampling is often used to help assess the causal effect of some exposure or intervention, typically when randomized experiments are not available or cannot be conducted. This book presents a selection of Donald B. Rubin's research articles on matched sampling, from the early 1970s, when the author was one of the major researchers involved in establishing the field, to recent contributions to this now extremely active area. The articles include fundamental theoretical studies that have become classics, important extensions, and real applications that range from breast cancer treatments to tobacco litigation to studies of criminal tendencies. They are organized into seven parts, each with an introduction by the author that provides historical and personal context and discusses the relevance of the work today. A concluding essay offers advice to investigators designing observational studies. The book provides an accessible introduction to the study of matched sampling and will be an indispensable reference for students and researchers.




An Introduction to Decision Theory


Book Description

A comprehensive and accessible introduction to all aspects of decision theory, now with new and updated discussions and over 140 exercises.




Developing a Protocol for Observational Comparative Effectiveness Research: A User's Guide


Book Description

This User’s Guide is a resource for investigators and stakeholders who develop and review observational comparative effectiveness research protocols. It explains how to (1) identify key considerations and best practices for research design; (2) build a protocol based on these standards and best practices; and (3) judge the adequacy and completeness of a protocol. Eleven chapters cover all aspects of research design, including: developing study objectives, defining and refining study questions, addressing the heterogeneity of treatment effect, characterizing exposure, selecting a comparator, defining and measuring outcomes, and identifying optimal data sources. Checklists of guidance and key considerations for protocols are provided at the end of each chapter. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews. More more information, please consult the Agency website: www.effectivehealthcare.ahrq.gov)




The Logic of Reliable Inquiry


Book Description

There are many proposed aims for scientific inquiry--to explain or predict events, to confirm or falsify hypotheses, or to find hypotheses that cohere with our other beliefs in some logical or probabilistic sense. This book is devoted to a different proposal--that the logical structure of the scientist's method should guarantee eventual arrival at the truth given the scientist's background assumptions. Interest in this methodological property, called "logical reliability," stems from formal learning theory, which draws its insights not from the theory of probability, but from the theory of computability. Kelly first offers an accessible explanation of formal learning theory, then goes on to develop and explore a systematic framework in which various standard learning theoretic results can be seen as special cases of simpler and more general considerations. This approach answers such important questions as whether there are computable methods more reliable than Bayesian updating or Popper's method of conjectures and refutations. Finally, Kelly clarifies the relationship between the resulting framework and other standard issues in the philosophy of science, such as probability, causation, and relativism. His work is a major contribution to the literature and will be essential reading for scientists, logicians, and philosophers