Principles and Applications of Environmental Biotechnology for a Sustainable Future


Book Description

This textbook on Environmental Biotechnology not only presents an unbiased overview of the practical biological approaches currently employed to address environmental problems, but also equips readers with a working knowledge of the science that underpins them. Starting with the fundamentals of biotechnology, it subsequently provides detailed discussions of global environmental problems including microbes and their interaction with the environment, xenobiotics and their remediation, solid waste management, waste water treatment, bioreactors, biosensors, biomining and biopesticides. This book also covers renewable and non-renewable bioenergy resources, biodiversity and its conservation, and approaches to monitoring biotechnological industries, genetically modified microorganism and foods so as to increase awareness. All chapters are written in a highly accessible style, and each also includes a short bibliography for further research. In summary this textbook offers a valuable asset, allowing students, young researchers and professionals in the biotechnology industry to grasp the basics of environmental biotechnology.




Environmental Biotechnology


Book Description

With focus on the practical use of modern biotechnology for environmental sustainability, this book provides a thoughtful overview of molecular aspects of environmental studies to create a new awareness of fundamental biological processes and sustainable ecological concerns. It covers the latest research by prominent scientists in modern biology and delineates recent and prospective applications in the sub-areas of environmental biotechnology with special focus on the biodegradation of toxic pollutants, bioremediation of contaminated environments, and bioconversion of organic wastes toward a green economy and sustainable future.




Applied Environmental Biotechnology: Present Scenario and Future Trends


Book Description

Applied Environmental Biotechnology: Present Scenario and Future Trends is designed to serve as a reference book for students and researchers working in the area of applied environmental science. It presents various applications of environmental studies that involve the use of living organisms, bioprocesses engineering technology, and other fields in solving environmental problems like waste and waste waters. It includes not only the pure biological sciences such as genetics, microbiology, biochemistry and chemistry but also from outside the sphere of biology such as chemical engineering, bioprocess engineering, information technology, and biophysics. Starting with the fundamentals of bioremediation, the book introduces various environmental applications such as bioremediation, phytoremediation, microbial diversity in conservation and exploration, in-silico approach to study the regulatory mechanisms and pathways of industrially important microorganisms biological phosphorous removal, ameliorative approaches for management of chromium phytotoxicity, sustainable production of biofuels from microalgae using a biorefinery approach, bioelectrochemical systems (BES) for microbial electroremediation and oil spill remediation. The book has been designed to serve as comprehensive environmental biotechnology textbooks as well as wide-ranging reference books. Environmental remediation, pollution control, detection and monitoring are evaluated considering the achievement as well as the perspectives in the development of environmental biotechnology. Various relevant articles are chosen up to illustrate the main areas of environmental biotechnology: industrial waste water treatment, soil treatment, oil remediation, phytoremediation, microbial electro remediation and development of biofuels dealing with microbial and process engineering aspects. The distinct role of environmental biotechnology in future is emphasized considering the opportunities to contribute with new approached and directions in remediation of contaminated environment, minimising waste releases and development pollution prevention alternatives at before and end of pipe.




Environmental Biotechnology: For Sustainable Future


Book Description

Environmental sustainability is one of the biggest issues faced by the mankind. Rapid & rampant industrialization has put great pressure on the natural resources. To make our planet a sustainable ecosystem, habitable for future generations & provide equal opportunity for all the living creatures we not only need to make corrections but also remediate the polluted natural resources. The low-input biotechnological techniques involving microbes and plants can provide the solution for resurrecting the ecosystems. Bioremediation and biodegradation can be used to improve the conditions of polluted soil and water bodies. Green energy involving biofuels have to replace the fossil fuels to combat pollution & global warming. Biological alternatives (bioinoculants) have to replace harmful chemicals for maintaining sustainability of agro-ecosystems. The book will cover the latest developments in environmental biotech so as to use in clearing and maintaining the ecosystems for sustainable future.




Environmental Biotechnology


Book Description

The application of biologically-engineered solutions toenvironmental problems has become far more readily acceptable andwidely understood. However there remains some uncertainty amongstpractitioners regarding how and where the microscopic, functionallevel fits into the macroscopic, practical applications. It isprecisely this gap which the book sets out to fill. Dividing the topic into logical strands covering pollution,waste and manufacturing, the book examines the potential forbiotechnological interventions and current industrial practice,with the underpinning microbial techniques and methods described,in context, against this background. Each chapter is supported by located case studies from a rangeof industries and countries to provide readers with an overview ofthe range of applications for biotechnology. Essential reading for undergraduates and Masters studentstaking modules in Biotechnology or Pollution Control as part ofEnvironmental Science, Environmental Management or EnvironmentalBiology programmes. It is also suitable for professionals involvedwith water, waste management and pollution control.




Environmental Sustainability


Book Description

Covers different categories of green technologies (e.g. biofuels, renewable energy sources, phytoremediation etc.,) in a nutshell -Focuses on next generation technologies which will help to attain the sustainable development -The chapters widely cover for students, faculties and researchers in the scientific arena of Environmentalists, Agriculturalists, Engineers and Policy Makers The World Environment Day 2012 is prepared to embrace green economy. The theme for 2012 encompasses various aspects of human living, ranging from transport to energy to food to sustainable livelihood. Green technology, an eco-friendly clean technology contributes to sustainable development to conserve the natural resources and environment which will meet the demands of the present and future generations. The proposed book mainly focuses on renewable energy sources, organic farming practices, phyto/bioremediation of contaminants, biofuels, green buildings and green chemistry. All of these eco-friendly technologies will help to reduce the amount of waste and pollution and enhance the nation’s economic growth in a sustainable manner. This book is aimed to provide an integrated approach to sustainable environment and it will be of interest not only to environmentalists but also to agriculturists, soil scientists and bridge the gap between the scientists and policy-makers.




Biotechnology for Sustainable Environment


Book Description

This book brings together the most recent advances from leading experts in the burgeoning field of environmental biotechnology. The contributing chapters adopt a multidisciplinary approach related to environmental aspects of agriculture, industry, pharmaceutical sciences and drug developments from plant and microbial sources, biochemical chemical techniques/methods/protocols involved in different areas of environmental biotechnology. Book also highlights recent advancements, newly emerging technologies, and thought provoking approaches from different parts of the world. It also discusses potential future prospects associated with some frontier development of biotechnological research related to the environment. This book will be of interest to teachers, researchers, biotechnologists, capacity builders and policymakers, and will serve as additional reading material for undergraduate and graduate students of biotechnology, microbiology and environmental sciences.




Environmental Effects of Transgenic Plants


Book Description

Transgenic crops offer the promise of increased agricultural productivity and better quality foods. But they also raise the specter of harmful environmental effects. In this new book, a panel of experts examines: • Similarities and differences between crops developed by conventional and transgenic methods • Potential for commercialized transgenic crops to change both agricultural and nonagricultural landscapes • How well the U.S. government is regulating transgenic crops to avoid any negative effects. Environmental Effects of Transgenic Plants provides a wealth of information about transgenic processes, previous experience with the introduction of novel crops, principles of risk assessment and management, the science behind current regulatory schemes, issues in monitoring transgenic products already on the market, and more. The book discusses public involvementâ€"and public confidenceâ€"in biotechnology regulation. And it looks to the future, exploring the potential of genetic engineering and the prospects for environmental effects.




Microorganisms for Sustainable Environment and Health


Book Description

Microorganisms for Sustainable Environment and Health covers hazardous pollutants released from natural as well as anthropogenic activities and implications on environmental and human health. This book serves as a valuable source of basic knowledge and recent developments in the clean technologies and pollution-associated diseases and abnormalities in the context of microorganisms. Focused on current solutions to various environmental problems in the field of bioremediation, it provides a detailed knowledge on the various types of toxic environmental pollutants discharged from different sources, their toxicological effects in environments, humans, animals and plants as well as their biodegradation and bioremediation approaches. This book helps environmental scientists and microbiologists learn about existing environmental problems and suggests ways to control or contain their effects by employing various treatment approaches. - Provides information on waste treatment approaches using microbes - Includes applications in biofuel and bioenergy production - Covers green belt development, hydroponics, phytoremediation, wetland treatment technology, and common effluent treatment plants (CETPs) - Discusses dissemination of antibiotic resistance among pathogenic microbes and strategies to combat multi-drug resistance (MDR)




Industrialization of Biology


Book Description

The tremendous progress in biology over the last half century - from Watson and Crick's elucidation of the structure of DNA to today's astonishing, rapid progress in the field of synthetic biology - has positioned us for significant innovation in chemical production. New bio-based chemicals, improved public health through improved drugs and diagnostics, and biofuels that reduce our dependency on oil are all results of research and innovation in the biological sciences. In the past decade, we have witnessed major advances made possible by biotechnology in areas such as rapid, low-cost DNA sequencing, metabolic engineering, and high-throughput screening. The manufacturing of chemicals using biological synthesis and engineering could expand even faster. A proactive strategy - implemented through the development of a technical roadmap similar to those that enabled sustained growth in the semiconductor industry and our explorations of space - is needed if we are to realize the widespread benefits of accelerating the industrialization of biology. Industrialization of Biology presents such a roadmap to achieve key technical milestones for chemical manufacturing through biological routes. This report examines the technical, economic, and societal factors that limit the adoption of bioprocessing in the chemical industry today and which, if surmounted, would markedly accelerate the advanced manufacturing of chemicals via industrial biotechnology. Working at the interface of synthetic chemistry, metabolic engineering, molecular biology, and synthetic biology, Industrialization of Biology identifies key technical goals for next-generation chemical manufacturing, then identifies the gaps in knowledge, tools, techniques, and systems required to meet those goals, and targets and timelines for achieving them. This report also considers the skills necessary to accomplish the roadmap goals, and what training opportunities are required to produce the cadre of skilled scientists and engineers needed.