Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems


Book Description

Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems will cover the up-to-date biosensor technologies used for the detection of bacteria. Written by the world's most renowned and learned scientists each in their own area of expertise, Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems is the first title to cover this expanding research field.




Recognition Receptors in Biosensors


Book Description

Recognition receptors play a key role in the successful implementation of chemical and biosensors. Molecular recognition refers to non-covalent speci?c binding between molecules, one of which is typically a macromolecule or a molecular assembly, and the other is the target molecule (ligand or analyte). Biomolecular recognition is typically driven by many weak interactions such as hydrogen bo- ing, metal coordination, hydrophobic forces, van der Waals forces, pi-pi interactions and electrostatic interaction (due to permanent charges, dipoles, and quadrupoles) the polarization of charge distributions by the interaction partner leading to ind- tion and dispersion forces, and Pauli-exclusion-principle-derived inter-atomic repulsion, and a strong, “attractive” force arising largely from the entropy of the solvent and termed the hydrophobic effect. In recent years, there has been much progress in understanding the forces that drive the formation of such complexes, and how these forces are relate to the physical properties of the interacting molecules and their environment allows rational design of molecules and materials that interact in speci?c and desired ways. This book presents a signi?cant and up-to-date review of the various recognition elements, their immobilization, characterization techniques by a panel of dist- guished scientists. This work is a comprehensive approach to the recognition receptors area presenting a thorough knowledge of the subject and an effective integration of these receptors on sensor surfaces in order to appropriately convey the state-of the-art fundamentals and applications of the most innovative approaches.




Principle and Development of Phage-Based Biosensors


Book Description

Detection and identification of pathogenic bacteria is important in the field of public health, medicine, food safety, environmental monitoring and security. Worldwide, the common cause of mortality and morbidity is bacterial infection often due to misdiagnosis or delay in diagnosis. Existing bacterial detection methods rely on conventional culture or microscopic techniques and molecular methods that often time consuming, laborious and expensive, or need trained users. In recent years, biosensor remained an interesting topic for bacterial detection and many biosensors involving different bio-probes have been reported. Compared to antibodies, nucleic acids and enzymes etc., based biosensors, bacteriophages can be cheaply produced and are relatively much stable to elevated temperature, extreme pH, and diverse ionic strength. Therefore, there is an urgent need for phage-based biosensor for bacterial pathogen detection. Furthermore, bearing high affinity and specificity, bacteriophages are perfect bio-recognition probes in biosensor development for bacterial detection. In this regard, active and oriented phages immobilization is the key step toward phage-based biosensor development. This chapter compares different bacterial detection techniques, and introduces the basic of biosensor and different bio-probes involved in biosensor development. Further we highlight the involvement and importance of phages in biosensor and finally we briefed different phage immobilization approaches used in development of phage-based biosensors.




Bacterial Sensors


Book Description

Bacterial reporters are live, genetically engineered cells with promising application in bioanalytics. They contain genetic circuitry to produce a cellular sensing element, which detects the target compound and relays the detection to specific synthesis of so-called reporter proteins (the presence or activity of which is easy to quantify). Bioassays with bacterial reporters are a useful complement to chemical analytics because they measure biological responses rather than total chemical concentrations. Simple bacterial reporter assays may also replace more costly chemical methods as a first line sample analysis technique. Recent promising developments integrate bacterial reporter cells with microsystems to produce bacterial biosensors. This lecture presents an in-depth treatment of the synthetic biological design principles of bacterial reporters, the engineering of which started as simple recombinant DNA puzzles, but has now become a more rational approach of choosing and combining sensing, controlling and reporting DNA 'parts'. Several examples of existing bacterial reporter designs and their genetic circuitry will be illustrated. Besides the design principles, the lecture also focuses on the application principles of bacterial reporter assays. A variety of assay formats will be illustrated, and principles of quantification will be dealt with. In addition to this discussion, substantial reference material is supplied in various Annexes. Table of Contents: Short History of the use of Bacteria for Biosensing and Bioreporting / Genetic Engineering Concepts / Measuring with Bioreporters / Epilogue




Biosensors


Book Description

Nowadays, the implementation of novel technological platforms in biosensor-based developments is primarily directed to the miniaturization of analytical systems and lowering the limits of detection. Rapid scientific and technological progress enables the application of biosensors for the online detection of minute concentrations of different chemical compounds in a wide selection of matrixes and monitoring extremely low levels of biomarkers even in living organisms and individual cells. This book, including 16 chapters, characterizes the present state of the art and prospective options for micro and nanoscale activities in biosensors construction and applications.




Interpretation of Equine Laboratory Diagnostics


Book Description

Interpretation of Equine Laboratory Diagnostics offers a comprehensive approach to equine laboratory diagnostics, including hematology, clinical chemistry, serology, body fluid analysis, microbiology, clinical parasitology, endocrinology, immunology, and molecular diagnostics. Offers a practical resource for the accurate interpretation of laboratory results, with examples showing real-world applications Covers hematology, clinical chemistry, serology, body fluid analysis, microbiology, clinical parasitology, endocrinology, immunology, and molecular diagnostics Introduces the underlying principles of laboratory diagnostics Provides clinically oriented guidance on performing and interpreting laboratory tests Presents a complete reference to establish and new diagnostic procedures Offers a practical resource for the accurate interpretation of laboratory results, with examples showing real-world applications Covers hematology, clinical chemistry, serology, body fluid analysis, microbiology, clinical parasitology, endocrinology, immunology, and molecular diagnostics Introduces the underlying principles of laboratory diagnostics Provides clinically oriented guidance on performing and interpreting laboratory tests Presents a complete reference to established and new diagnostic procedures




Biosensors – Recent Advances and Future Challenges


Book Description

The present book is devoted to all aspects of biosensing in a very broad definition, including, but not limited to, biomolecular composition used in biosensors (e.g., biocatalytic enzymes, DNAzymes, abiotic nanospecies with biocatalytic features, bioreceptors, DNA/RNA, aptasensors, etc.), physical signal transduction mechanisms (e.g., electrochemical, optical, magnetic, etc.), engineering of different biosensing platforms, operation of biosensors in vitro and in vivo (implantable or wearable devices), self-powered biosensors, etc. The biosensors can be represented with analogue devices measuring concentrations of analytes and binary devices operating in the YES/NO format, possibly with logical processing of input signals. Furthermore, the book is aimed at attracting young scientists and introducing them to the field, while providing newcomers with an enormous collection of literature references.




Porous Silicon for Biomedical Applications


Book Description

Porous silicon has a range of properties, making it ideal for drug delivery, cancer therapy, and tissue engineering. Porous Silicon for Biomedical Applications provides a comprehensive review of this emerging nanostructured and biodegradable biomaterial. Chapters in part one focus on the fundamentals and properties of porous silicon for biomedical applications, including thermal properties and stabilization, photochemical and nonthermal chemical modification, protein-modified porous silicon films, and biocompatibility of porous silicon. Part two discusses applications in bioimaging and sensing, and explores the optical properties of porous silicon materials; in vivo imaging assessment and radiolabelling of porous silicon; and nanoporous silicon biosensors for DNA sensing and for bacteria detection. Finally, part three highlights drug loading and characterization of porous silicon materials, tumor targeting and imaging, and porous silicon scaffolds for functional tissue engineering, stem cell growth, and osteodifferentiation. With its acclaimed editor and international team of expert contributors, Porous Silicon for Biomedical Applications is a technical resource and indispensable guide for all those involved in the research, development, and application of porous silicon and other biomaterials, while providing a comprehensive introduction for students and academics interested in the field. Comprehensive review of porous silicon focusing on the fabrication and properties of this emerging material Specifically discusses drug delivery and orthopedic applications of porous silicon Aimed at materials researchers and scientists in the biomaterials industry – particularly those concerned with drug delivery and orthopedics




Nanobiomaterial Engineering


Book Description

This book comprehensively documents the application of Nanobiomaterials in the field of bio-medicine and diagnostics technologies by involving classical concepts/examples. Nanobiotechnology is an emerging area which encompasses all the facets of research of nano and biomaterials with their interaction with biological systems. The book briefly summarizes the various types of Nanomaterial’s, and highlights the recent developments in the synthesis of the nanomaterials for the diagnostic and therapeutic biomedical applications. It skilfully reviews the utilization of the nanomaterials alone or in combination with other bio-molecules as a contrast enhancer in in-vivo imaging, Nano-Theranostics, drug delivery, and sensing transducer matrix. It also discusses the current research on designing of the new Nanobiomaterials and their implementation in numerous fields including bio-medicine and diagnostics. Finally, it summarizes the future prospects and the commercial viability of Nanobiomaterials in the human health care.​




Opportunities in Biotechnology for Future Army Applications


Book Description

This report surveys opportunities for future Army applications in biotechnology, including sensors, electronics and computers, materials, logistics, and medical therapeutics, by matching commercial trends and developments with enduring Army requirements. Several biotechnology areas are identified as important for the Army to exploit, either by direct funding of research or by indirect influence of commercial sources, to achieve significant gains in combat effectiveness before 2025.