Principles of Copula Theory


Book Description

This book gives readers the solid and formal mathematical background to apply copulas to a range of mathematical areas, such as probability, real analysis, measure theory, and algebraic structures. The authors prove the results as simply as possible and unify various methods scattered throughout the literature in common frameworks, including shuffles of copulas. They also explore connections with related functions, such as quasi-copulas, semi-copulas, and triangular norms, that have been used in different domains.




An Introduction to Copulas


Book Description

Copulas are functions that join multivariate distribution functions to their one-dimensional margins. The study of copulas and their role in statistics is a new but vigorously growing field. In this book the student or practitioner of statistics and probability will find discussions of the fundamental properties of copulas and some of their primary applications. The applications include the study of dependence and measures of association, and the construction of families of bivariate distributions. With nearly a hundred examples and over 150 exercises, this book is suitable as a text or for self-study. The only prerequisite is an upper level undergraduate course in probability and mathematical statistics, although some familiarity with nonparametric statistics would be useful. Knowledge of measure-theoretic probability is not required. Roger B. Nelsen is Professor of Mathematics at Lewis & Clark College in Portland, Oregon. He is also the author of "Proofs Without Words: Exercises in Visual Thinking," published by the Mathematical Association of America.




Analyzing Dependent Data with Vine Copulas


Book Description

This textbook provides a step-by-step introduction to the class of vine copulas, their statistical inference and applications. It focuses on statistical estimation and selection methods for vine copulas in data applications. These flexible copula models can successfully accommodate any form of tail dependence and are vital to many applications in finance, insurance, hydrology, marketing, engineering, chemistry, aviation, climatology and health. The book explains the pair-copula construction principles underlying these statistical models and discusses how to perform model selection and inference. It also derives simulation algorithms and presents real-world examples to illustrate the methodological concepts. The book includes numerous exercises that facilitate and deepen readers understanding, and demonstrates how the R package VineCopula can be used to explore and build statistical dependence models from scratch. In closing, the book provides insights into recent developments and open research questions in vine copula based modeling. The book is intended for students as well as statisticians, data analysts and any other quantitatively oriented researchers who are new to the field of vine copulas. Accordingly, it provides the necessary background in multivariate statistics and copula theory for exploratory data tools, so that readers only need a basic grasp of statistics and probability.




Copulas and Its Application in Hydrology and Water Resources


Book Description

This book presents an overview of copula theory and its application in hydrology, and provides valuable insights, useful methods and practical applications for multivariate hydrological analysis using copulas. In addition, it extends the traditional bivariate model to trivariate or multivariate models. The specific applications covered include the study of flood frequency analysis, drought frequency analysis, dependence analysis, flood coincidence risk analysis and statistical simulation using copulas. The book offers a valuable guide for researchers, scientists and engineers working in hydrology and water resources, and will also benefit graduate or doctoral students with a basic grasp of copula functions who want to learn about the latest research developments in the field.




Simulating Copulas


Book Description

This book provides the reader with a background on simulating copulas and multivariate distributions in general. It unifies the scattered literature on the simulation of various families of copulas (elliptical, Archimedean, Marshall-Olkin type, etc.) as well as on different construction principles (factor models, pair-copula construction, etc.). The book is self-contained and unified in presentation and can be used as a textbook for advanced undergraduate or graduate students with a firm background in stochastics. Alongside the theoretical foundation, ready-to-implement algorithms and many examples make this book a valuable tool for anyone who is applying the methodology.Errata(s)Errata (128 KB)




Copulas and Dependence Models with Applications


Book Description

This book presents contributions and review articles on the theory of copulas and their applications. The authoritative and refereed contributions review the latest findings in the area with emphasis on “classical” topics like distributions with fixed marginals, measures of association, construction of copulas with given additional information, etc. The book celebrates the 75th birthday of Professor Roger B. Nelsen and his outstanding contribution to the development of copula theory. Most of the book’s contributions were presented at the conference “Copulas and Their Applications” held in his honor in Almería, Spain, July 3-5, 2017. The chapter 'When Gumbel met Galambos' is published open access under a CC BY 4.0 license.




Copula Theory and Its Applications


Book Description

Copulas are mathematical objects that fully capture the dependence structure among random variables and hence offer great flexibility in building multivariate stochastic models. Since their introduction in the early 50's, copulas have gained considerable popularity in several fields of applied mathematics, such as finance, insurance and reliability theory. Today, they represent a well-recognized tool for market and credit models, aggregation of risks, portfolio selection, etc. This book is divided into two main parts: Part I - "Surveys" contains 11 chapters that provide an up-to-date account of essential aspects of copula models. Part II - "Contributions" collects the extended versions of 6 talks selected from papers presented at the workshop in Warsaw.




Handbook of Probabilistic Models


Book Description

Handbook of Probabilistic Models carefully examines the application of advanced probabilistic models in conventional engineering fields. In this comprehensive handbook, practitioners, researchers and scientists will find detailed explanations of technical concepts, applications of the proposed methods, and the respective scientific approaches needed to solve the problem. This book provides an interdisciplinary approach that creates advanced probabilistic models for engineering fields, ranging from conventional fields of mechanical engineering and civil engineering, to electronics, electrical, earth sciences, climate, agriculture, water resource, mathematical sciences and computer sciences. Specific topics covered include minimax probability machine regression, stochastic finite element method, relevance vector machine, logistic regression, Monte Carlo simulations, random matrix, Gaussian process regression, Kalman filter, stochastic optimization, maximum likelihood, Bayesian inference, Bayesian update, kriging, copula-statistical models, and more. - Explains the application of advanced probabilistic models encompassing multidisciplinary research - Applies probabilistic modeling to emerging areas in engineering - Provides an interdisciplinary approach to probabilistic models and their applications, thus solving a wide range of practical problems




Copula-Based Markov Models for Time Series


Book Description

This book provides statistical methodologies for time series data, focusing on copula-based Markov chain models for serially correlated time series. It also includes data examples from economics, engineering, finance, sport and other disciplines to illustrate the methods presented. An accessible textbook for students in the fields of economics, management, mathematics, statistics, and related fields wanting to gain insights into the statistical analysis of time series data using copulas, the book also features stand-alone chapters to appeal to researchers. As the subtitle suggests, the book highlights parametric models based on normal distribution, t-distribution, normal mixture distribution, Poisson distribution, and others. Presenting likelihood-based methods as the main statistical tools for fitting the models, the book details the development of computing techniques to find the maximum likelihood estimator. It also addresses statistical process control, as well as Bayesian and regression methods. Lastly, to help readers analyze their data, it provides computer codes (R codes) for most of the statistical methods.




Semiotic Principles in Semantic Theory


Book Description

This study represents a contribution to the theory of meaning in natural language. It proposes a semantic theory containing a set of regular relational principles. These principles enable semantic theory to describe connections from the lexical reading of a word to its figurative contextual reading, from one variant reading of a polysemous lexical item to another, from the idiomatic to its literal reading or to the literal reading(s) of one or more of its component lexical items. Semiotic theory provides a foundation by supplying principles defining motivated expression-content relations for signs generally. The author argues that regular semantic relational principles must dervive from such semiotic principles, to ensures the psychological reality and generality of the semantic principles.