Principles of Copula Theory


Book Description

This book gives readers the solid and formal mathematical background to apply copulas to a range of mathematical areas, such as probability, real analysis, measure theory, and algebraic structures. The authors prove the results as simply as possible and unify various methods scattered throughout the literature in common frameworks, including shuffles of copulas. They also explore connections with related functions, such as quasi-copulas, semi-copulas, and triangular norms, that have been used in different domains.




An Introduction to Copulas


Book Description

Copulas are functions that join multivariate distribution functions to their one-dimensional margins. The study of copulas and their role in statistics is a new but vigorously growing field. In this book the student or practitioner of statistics and probability will find discussions of the fundamental properties of copulas and some of their primary applications. The applications include the study of dependence and measures of association, and the construction of families of bivariate distributions. With nearly a hundred examples and over 150 exercises, this book is suitable as a text or for self-study. The only prerequisite is an upper level undergraduate course in probability and mathematical statistics, although some familiarity with nonparametric statistics would be useful. Knowledge of measure-theoretic probability is not required. Roger B. Nelsen is Professor of Mathematics at Lewis & Clark College in Portland, Oregon. He is also the author of "Proofs Without Words: Exercises in Visual Thinking," published by the Mathematical Association of America.




Analyzing Dependent Data with Vine Copulas


Book Description

This textbook provides a step-by-step introduction to the class of vine copulas, their statistical inference and applications. It focuses on statistical estimation and selection methods for vine copulas in data applications. These flexible copula models can successfully accommodate any form of tail dependence and are vital to many applications in finance, insurance, hydrology, marketing, engineering, chemistry, aviation, climatology and health. The book explains the pair-copula construction principles underlying these statistical models and discusses how to perform model selection and inference. It also derives simulation algorithms and presents real-world examples to illustrate the methodological concepts. The book includes numerous exercises that facilitate and deepen readers understanding, and demonstrates how the R package VineCopula can be used to explore and build statistical dependence models from scratch. In closing, the book provides insights into recent developments and open research questions in vine copula based modeling. The book is intended for students as well as statisticians, data analysts and any other quantitatively oriented researchers who are new to the field of vine copulas. Accordingly, it provides the necessary background in multivariate statistics and copula theory for exploratory data tools, so that readers only need a basic grasp of statistics and probability.




Copulas and Its Application in Hydrology and Water Resources


Book Description

This book presents an overview of copula theory and its application in hydrology, and provides valuable insights, useful methods and practical applications for multivariate hydrological analysis using copulas. In addition, it extends the traditional bivariate model to trivariate or multivariate models. The specific applications covered include the study of flood frequency analysis, drought frequency analysis, dependence analysis, flood coincidence risk analysis and statistical simulation using copulas. The book offers a valuable guide for researchers, scientists and engineers working in hydrology and water resources, and will also benefit graduate or doctoral students with a basic grasp of copula functions who want to learn about the latest research developments in the field.




Elements of Copula Modeling with R


Book Description

This book introduces the main theoretical findings related to copulas and shows how statistical modeling of multivariate continuous distributions using copulas can be carried out in the R statistical environment with the package copula (among others). Copulas are multivariate distribution functions with standard uniform univariate margins. They are increasingly applied to modeling dependence among random variables in fields such as risk management, actuarial science, insurance, finance, engineering, hydrology, climatology, and meteorology, to name a few. In the spirit of the Use R! series, each chapter combines key theoretical definitions or results with illustrations in R. Aimed at statisticians, actuaries, risk managers, engineers and environmental scientists wanting to learn about the theory and practice of copula modeling using R without an overwhelming amount of mathematics, the book can also be used for teaching a course on copula modeling.




Copulas and Dependence Models with Applications


Book Description

This book presents contributions and review articles on the theory of copulas and their applications. The authoritative and refereed contributions review the latest findings in the area with emphasis on “classical” topics like distributions with fixed marginals, measures of association, construction of copulas with given additional information, etc. The book celebrates the 75th birthday of Professor Roger B. Nelsen and his outstanding contribution to the development of copula theory. Most of the book’s contributions were presented at the conference “Copulas and Their Applications” held in his honor in Almería, Spain, July 3-5, 2017. The chapter 'When Gumbel met Galambos' is published open access under a CC BY 4.0 license.




Copula Theory and Its Applications


Book Description

Copulas are mathematical objects that fully capture the dependence structure among random variables and hence offer great flexibility in building multivariate stochastic models. Since their introduction in the early 50's, copulas have gained considerable popularity in several fields of applied mathematics, such as finance, insurance and reliability theory. Today, they represent a well-recognized tool for market and credit models, aggregation of risks, portfolio selection, etc. This book is divided into two main parts: Part I - "Surveys" contains 11 chapters that provide an up-to-date account of essential aspects of copula models. Part II - "Contributions" collects the extended versions of 6 talks selected from papers presented at the workshop in Warsaw.




Convolution Copula Econometrics


Book Description

This book presents a novel approach to time series econometrics, which studies the behavior of nonlinear stochastic processes. This approach allows for an arbitrary dependence structure in the increments and provides a generalization with respect to the standard linear independent increments assumption of classical time series models. The book offers a solution to the problem of a general semiparametric approach, which is given by a concept called C-convolution (convolution of dependent variables), and the corresponding theory of convolution-based copulas. Intended for econometrics and statistics scholars with a special interest in time series analysis and copula functions (or other nonparametric approaches), the book is also useful for doctoral students with a basic knowledge of copula functions wanting to learn about the latest research developments in the field.




The Principles of Mathematics


Book Description

Russell's classic The Principles of Mathematics sets forth his landmark thesis that mathematics and logic are identical--that what is commonly called mathematics is simply later deductions from logical premises.




Semiotic Principles in Semantic Theory


Book Description

This study represents a contribution to the theory of meaning in natural language. It proposes a semantic theory containing a set of regular relational principles. These principles enable semantic theory to describe connections from the lexical reading of a word to its figurative contextual reading, from one variant reading of a polysemous lexical item to another, from the idiomatic to its literal reading or to the literal reading(s) of one or more of its component lexical items. Semiotic theory provides a foundation by supplying principles defining motivated expression-content relations for signs generally. The author argues that regular semantic relational principles must dervive from such semiotic principles, to ensures the psychological reality and generality of the semantic principles.