Principles of Differential and Integral Equations


Book Description

In summary, the author has provided an elegant introduction to important topics in the theory of ordinary differential equations and integral equations. -- Mathematical Reviews This book is intended for a one-semester course in differential and integral equations for advanced undergraduates or beginning graduate students, with a view toward preparing the reader for graduate-level courses on more advanced topics. There is some emphasis on existence, uniqueness, and the qualitative behavior of solutions. Students from applied mathematics, physics, and engineering will find much of value in this book. The first five chapters cover ordinary differential equations. Chapter 5 contains a good treatment of the stability of ODEs. The next four chapters cover integral equations, including applications to second-order differential equations. Chapter 7 is a concise introduction to the important Fredholm theory of linear integral equations. The final chapter is a well-selected collection of fascinating miscellaneous facts about differential and integral equations. The prerequisites are a good course in advanced calculus, some preparation in linear algebra, and a reasonable acquaintance with elementary complex analysis. There are exercises throughout the text, with the more advanced of them providing good challenges to the student.




Lectures on Differential and Integral Equations


Book Description

Lucid, self-contained exposition of theory of ordinary differential equations and integral equations. Boundary value problem of second order linear ordinary differential equations, Fredholm integral equations, many other topics. Bibliography. 1960 edition.




Introduction to Nonlinear Differential and Integral Equations


Book Description

Topics covered include differential equations of the 1st order, the Riccati equation and existence theorems, 2nd order equations, elliptic integrals and functions, nonlinear mechanics, nonlinear integral equations, more. Includes 137 problems.




Ordinary Differential Equations


Book Description

An easy to understand guide covering key principles of ordinary differential equations and their applications.




Positive Solutions of Differential, Difference and Integral Equations


Book Description

In analysing nonlinear phenomena many mathematical models give rise to problems for which only nonnegative solutions make sense. In the last few years this discipline has grown dramatically. This state-of-the-art volume offers the authors' recent work, reflecting some of the major advances in the field as well as the diversity of the subject. Audience: This volume will be of interest to graduate students and researchers in mathematical analysis and its applications, whose work involves ordinary differential equations, finite differences and integral equations.




Principles of Differential Equations


Book Description

An accessible, practical introduction to the principles of differential equations The field of differential equations is a keystone of scientific knowledge today, with broad applications in mathematics, engineering, physics, and other scientific fields. Encompassing both basic concepts and advanced results, Principles of Differential Equations is the definitive, hands-on introduction professionals and students need in order to gain a strong knowledge base applicable to the many different subfields of differential equations and dynamical systems. Nelson Markley includes essential background from analysis and linear algebra, in a unified approach to ordinary differential equations that underscores how key theoretical ingredients interconnect. Opening with basic existence and uniqueness results, Principles of Differential Equations systematically illuminates the theory, progressing through linear systems to stable manifolds and bifurcation theory. Other vital topics covered include: Basic dynamical systems concepts Constant coefficients Stability The Poincaré return map Smooth vector fields As a comprehensive resource with complete proofs and more than 200 exercises, Principles of Differential Equations is the ideal self-study reference for professionals, and an effective introduction and tutorial for students.




Differential and Integral Equations through Practical Problems and Exercises


Book Description

Many important phenomena are described and modeled by means of differential and integral equations. To understand these phenomena necessarily implies being able to solve the differential and integral equations that model them. Such equations, and the development of techniques for solving them, have always held a privileged place in the mathematical sciences. Today, theoretical advances have led to more abstract and comprehensive theories which are increasingly more complex in their mathematical concepts. Theoretical investigations along these lines have led to even more abstract and comprehensive theories, and to increasingly complex mathematical concepts. Long-standing teaching practice has, however, shown that the theory of differential and integral equations cannot be studied thoroughly and understood by mere contemplation. This can only be achieved by acquiring the necessary techniques; and the best way to achieve this is by working through as many different exercises as possible. The eight chapters of this book contain a large number of problems and exercises, selected on the basis of long experience in teaching students, which together with the author's original problems cover the whole range of current methods employed in solving the integral, differential equations, and the partial differential equations of order one, without, however, renouncing the classical problems. Every chapter of this book begins with the succinct theoretical exposition of the minimum of knowledge required to solve the problems and exercises therein.




Analysis of Approximation Methods for Differential and Integral Equations


Book Description

This book is primarily based on the research done by the Numerical Analysis Group at the Goethe-Universitat in Frankfurt/Main, and on material presented in several graduate courses by the author between 1977 and 1981. It is hoped that the text will be useful for graduate students and for scientists interested in studying a fundamental theoretical analysis of numerical methods along with its application to the most diverse classes of differential and integral equations. The text treats numerous methods for approximating solutions of three classes of problems: (elliptic) boundary-value problems, (hyperbolic and parabolic) initial value problems in partial differential equations, and integral equations of the second kind. The aim is to develop a unifying convergence theory, and thereby prove the convergence of, as well as provide error estimates for, the approximations generated by specific numerical methods. The schemes for numerically solving boundary-value problems are additionally divided into the two categories of finite difference methods and of projection methods for approximating their variational formulations.







Topics in Differential and Integral Equations and Operator Theory


Book Description

In this volume three important papers of M.G. Krein appear for the first time in English translation. Each of them is a short self-contained monograph, each a masterpiece of exposition. Although two of them were written more than twenty years ago, the passage of time has not decreased their value. They are as fresh and vital as if they had been written only yesterday. These papers contain a wealth of ideas, and will serve as a source of stimulation and inspiration for experts and beginners alike. The first paper is dedicated to the theory of canonical linear differential equations, with periodic coefficients. It focuses on the study of linear Hamiltonian systems with bounded solutions which stay bounded under small perturbations of the system. The paper uses methods from operator theory in finite and infinite dimensional spaces and complex analysis. For an account of more recent literature which was generated by this paper see AMS Translations (2), Volume 93, 1970, pages 103-176 and Integral Equations and Operator Theory, Volume 5, Number 5, 1982, pages 718-757.