Principles of Environmental Thermodynamics and Kinetics


Book Description

Environmental engineering, is by its very nature, interdisciplinary and it is a challenge to develop courses that will provide students with a thorough broad-based curriculum that includes every aspect of the environmental engineering profession. Environmental engineers perform a variety of functions, most critical of which are process design for waste treatment or pollution prevention, fate and transport modeling, green engineering, and risk assessment. Chemical thermodynamics and chemical kinetics, the two main pillars of physical chemistry, are two of the many subjects that are crucial to environmental engineering. Based on the success of the successes of previous editions, Principles of Environmental Thermodynamics and Kinetics, Fourth Edition, provides an overarching view of the applications of chemical thermodynamics and kinetics in various aspects of the field of environmental science and engineering. Written by experts in the field, this new edition offers an improved logical progression of the text with principles and applications, includes new case studies with current relevant environmental events and their relationship to thermodynamics and kinetics, and adds examples and problems for the updated environmental events. It also includes a comprehensive analysis of green engineering with relation applications, updated appendices, and an increased number of thermodynamic and kinetic data for chemical species. While it is primarily intended for undergraduate students at the junior/senior level, the breadth and scope of this book make it a valuable resource for introductory graduate courses and a useful reference for environmental engineers.




Principles of Environmental Thermodynamics and Kinetics


Book Description

Environmental engineering, is by its very nature, interdisciplinary and it is a challenge to develop courses that will provide students with a thorough broad-based curriculum that includes every aspect of the environmental engineering profession. Environmental engineers perform a variety of functions, most critical of which are process design for waste treatment or pollution prevention, fate and transport modeling, green engineering, and risk assessment. Chemical thermodynamics and chemical kinetics, the two main pillars of physical chemistry, are two of the many subjects that are crucial to environmental engineering. Based on the success of the successes of previous editions, Principles of Environmental Thermodynamics and Kinetics, Fourth Edition, provides an overarching view of the applications of chemical thermodynamics and kinetics in various aspects of the field of environmental science and engineering. Written by experts in the field, this new edition offers an improved logical progression of the text with principles and applications, includes new case studies with current relevant environmental events and their relationship to thermodynamics and kinetics, and adds examples and problems for the updated environmental events. It also includes a comprehensive analysis of green engineering with relation applications, updated appendices, and an increased number of thermodynamic and kinetic data for chemical species. While it is primarily intended for undergraduate students at the junior/senior level, the breadth and scope of this book make it a valuable resource for introductory graduate courses and a useful reference for environmental engineers.




Elements of Environmental Engineering


Book Description

Revised, updated, and rewritten where necessary, but keeping the clear writing and organizational style that made previous editions so popular, Elements of Environmental Engineering: Thermodynamics and Kinetics, Third Edition contains new problems and new examples that better illustrate theory. The new edition contains examples with practical flavor such as global warming, ozone layer depletion, nanotechnology, green chemistry, and green engineering. With detailed theoretical discussion and principles illuminated by numerical examples, this book fills the gaps in coverage of the principles and applications of kinetics and thermodynamics in environmental engineering and science. New topics covered include: Green Chemistry and Engineering Biological Processes Life Cycle Analysis Global Climate Change The author discusses the applications of thermodynamics and kinetics and delineates the distribution of pollutants and the interrelationships between them. His demonstration of the theoretical foundations of chemical property estimations gives students an in depth understanding of the limitations of thermodynamics and kinetics as applied to environmental fate and transport modeling and separation processes for waste treatment. His treatment of the material underlines the multidisciplinary nature of environmental engineering. This book is unusual in environmental engineering since it deals exclusively with the applications of chemical thermodynamics and kinetics in environmental processes. The book’s multimedia approach to fate and transport modeling and in pollution control design options provides a science and engineering treatment of environmental problems.




Elements of Environmental Engineering


Book Description

Completely revised and updated, Elements of Environmental Engineering: Thermodynamics and Kinetics, Second Edition covers the applications of chemical thermodynamics and kinetics in environmental processes. Each chapter has been rewritten and includes new examples that better illuminate the theories discussed. An excellent introduction to environmental engineering, this reference stands alone in its multimedia approach to fate and transport modeling and in pollution control design options. Clearly and lucidly written, it provides extensive tables, figures, and data that make it the reference to have on this subject.




Principles of Environmental Geochemistry


Book Description

Many geochemists focus on natural systems with less emphasis on the human impact on those systems. Environmental chemists frequently approach their subject with less consideration of the historical record than geoscientists. The field of environmental geochemistry combines these approaches to address questions about the natural environment and anthropogenic effects on it. Eby provides students with a solid foundation in basic aqueous geochemistry before discussing the important role carbon compounds, isotopes, and minerals play in environmental issues. He then guides students through how these concepts apply to problems facing our atmosphere, continental lands, and oceans. Rather than broadly discussing a variety of environmental problems, the author focuses on principles throughout the text, leading students to understand processes and how knowledge of those processes can be applied to environmental problem solving. A wide variety of case studies and quantitative problems accompany each chapter, giving each instructor the flexibility to tailor the material to his/her course. Many problems have no single correct answer, illustrating the analytical nature of solving real-world environmental problems.




Environmental Inorganic Chemistry for Engineers


Book Description

Environmental Inorganic Chemistry for Engineers explains the principles of inorganic contaminant behavior, also applying these principles to explore available remediation technologies, and providing the design, operation, and advantages or disadvantages of the various remediation technologies. Written for environmental engineers and researchers, this reference provides the tools and methods that are imperative to protect and improve the environment. The book's three-part treatment starts with a clear and rigorous exposition of metals, including topics such as preparations, structures and bonding, reactions and properties, and complex formation and sequestering. This coverage is followed by a self-contained section concerning complex formation, sequestering, and organometallics, including hydrides and carbonyls. Part Two, Non-Metals, provides an overview of chemical periodicity and the fundamentals of their structure and properties. - Clearly explains the principles of inorganic contaminant behavior in order to explore available remediation technologies - Provides the design, operation, and advantages or disadvantages of the various remediation technologies - Presents a clear exposition of metals, including topics such as preparations, structures, and bonding, reaction and properties, and complex formation and sequestering




Geochemical Rate Models


Book Description

This well-organised, comprehensive reference and textbook describes rate models developed from fundamental kinetic theory and presents models using consistent terminology and notation. Major topics include rate equations, reactor theory, transition state theory, surface reactivity, advective and diffusive transport, aggregation kinetics, nucleation kinetics and solid-solid transformation rates. The theoretical basis and mathematical derivation of each model is presented in detail and illustrated with worked examples from real-world applications to geochemical problems. The book is also supported by online resources: self-study problems put students' new learning into practice, and spreadsheets provide the full data used in figures and examples, enabling students to manipulate the data for themselves. This is an ideal overview for graduate students, providing a solid understanding of geochemical kinetics. It will also provide researchers and professional geochemists with a valuable reference for solving scientific and engineering problems.




Environmental and Low Temperature Geochemistry


Book Description

Environmental and Low-Temperature Geochemistry presents conceptual and quantitative principles of geochemistry in order to foster understanding of natural processes at and near the earth’s surface, as well as anthropogenic impacts on the natural environment. It provides the reader with the essentials of concentration, speciation and reactivity of elements in soils, waters, sediments and air, drawing attention to both thermodynamic and kinetic controls. Specific features include: • An introductory chapter that reviews basic chemical principles applied to environmental and low-temperature geochemistry • Explanation and analysis of the importance of minerals in the environment • Principles of aqueous geochemistry • Organic compounds in the environment • The role of microbes in processes such as biomineralization, elemental speciation and reduction-oxidation reactions • Thorough coverage of the fundamentals of important geochemical cycles (C, N, P, S) • Atmospheric chemistry • Soil geochemistry • The roles of stable isotopes in environmental analysis • Radioactive and radiogenic isotopes as environmental tracers and environmental contaminants • Principles and examples of instrumental analysis in environmental geochemistry The text concludes with a case study of surface water and groundwater contamination that includes interactions and reactions of naturally-derived inorganic substances and introduced organic compounds (fuels and solvents), and illustrates the importance of interdisciplinary analysis in environmental geochemistry. Readership: Advanced undergraduate and graduate students studying environmental/low T geochemistry as part of an earth science, environmental science or related program. Additional resources for this book can be found at: www.wiley.com/go/ryan/geochemistry.




Thermodynamics, Statistical Thermodynamics, & Kinetics: Pearson New International Edition PDF eBook


Book Description

Engel and Reid’s Thermodynamics, Statistical Thermodynamics, & Kinetics gives students a contemporary and accurate overview of physical chemistry while focusing on basic principles that unite the sub-disciplines of the field. The Third Edition continues to emphasize fundamental concepts and presents cutting-edge research developments that demonstrate the vibrancy of physical chemistry today. MasteringChemistry® for Physical Chemistry — a comprehensive online homework and tutorial system specific to Physical Chemistry — is available for the first time with Engel and Reid to reinforce students' understanding of complex theory and to build problem-solving skills throughout the course.




Geochemistry


Book Description

This book provides a comprehensive introduction to the field of geochemistry. The book first lays out the ‘geochemical toolbox’: the basic principles and techniques of modern geochemistry, beginning with a review of thermodynamics and kinetics as they apply to the Earth and its environs. These basic concepts are then applied to understanding processes in aqueous systems and the behavior of trace elements in magmatic systems. Subsequent chapters introduce radiogenic and stable isotope geochemistry and illustrate their application to such diverse topics as determining geologic time, ancient climates, and the diets of prehistoric peoples. The focus then broadens to the formation of the solar system, the Earth, and the elements themselves. Then the composition of the Earth itself becomes the topic, examining the composition of the core, the mantle, and the crust and exploring how this structure originated. A final chapter covers organic chemistry, including the origin of fossil fuels and the carbon cycle’s role in controlling Earth’s climate, both in the geologic past and the rapidly changing present. Geochemistry is essential reading for all earth science students, as well as for researchers and applied scientists who require an introduction to the essential theory of geochemistry, and a survey of its applications in the earth and environmental sciences. Additional resources can be found at: www.wiley.com/go/white/geochemistry