Principles of Evolution: Systems, Species, and the History of Life


Book Description

Principles of Evolution considers evolution in the context of systems biology, a contemporary approach for handling biological complexity. Evolution needs this systems perspective for three reasons. First, most activity in living organisms is driven by complex networks of proteins and this has direct implications, particularly for understanding evo-devo and for seeing how variation is initiated. Second, it provides the natural language for discussing phylogenetic trees. Third, evolutionary change involves events at levels ranging from the genome to the ecosystem and systems biology provides a context for integrating material of this complexity. Understanding evolution means, on the one hand, describing the history of life and, on the other, making sense of the principles that drove that history. The solution adopted here is to make the science of evolution the primary focus of the book and place the various parts of the history of life in the context of the research that unpicks it. This means that the history is widely distributed across the text. This concise textbook assumes that the reader has a fair amount of biological knowledge and gives equal weight to all the major themes of evolution: the fossil record, phylogenetics, evodevo, and speciation. Principles of Evolution will therefore be an interesting and thought-provoking read for honors-level undergraduates, and graduates working in the biological sciences.




Principles of Evolution


Book Description

Principles of Evolution covers all aspects of the subject. Following an introductory section that provides necessary background, it has chapters on the evidence for evolution that cover the fossil record, DNA-sequence homologies, and protein homologies (evo-devo). It also includes a full history of life from the first universal common ancestor, through the rise of the eukaryote and on to the major groups of phyla. This section is followed by one on the mechanism of evolution with chapters on variation, selection and speciation. The main part of the book ends with a chapter on human evolution and this is followed by appendices that expand on the making of fossils, the history of the subject and creationism. What marks this book as different from others on evolution is its systems-biology perspective. This new area focuses on the role of protein networks and on multi-level complexity, and is used in three contexts. First, most biological activity is driven by such networks and this has direct implications for understanding evo-devo and for seeing how variation is initiated, mainly during embryogenesis. Second, it provides the natural language for discussing phylogenetics. Third, evolutionary change involves events at levels ranging from the genome to the ecosystem and systems biology provides a context for integrating material of this complexity. The book assumes a basic grounding in biology but little mathematics as the difficult subject of evolutionary population genetics is mainly covered qualitatively, with major results being discussed and used rather than derived. Principles of Evolution will be an interesting and thought-provoking text for undergraduates and graduates across the biological sciences.




Evolution


Book Description

Evolution is the single unifying principle of biology and core to everything in the life sciences. More than a century of work by scientists from across the biological spectrum has produced a detailed history of life across the phyla and explained the mechanisms by which new species form. This textbook covers both this history and the mechanisms of speciation; it also aims to provide students with the background needed to read the research literature on evolution. Students will therefore learn about cladistics, molecular phylogenies, the molecular-genetical basis of evolutionary change including the important role of protein networks, symbionts and holobionts, together with the core principles of developmental biology. The book also includes introductory appendices that provide background knowledge on, for example, the diversity of life today, fossils, the geology of Earth and the history of evolutionary thought. Key Features Summarizes the origins of life and the evolution of the eukaryotic cell and of Urbilateria, the last common ancestor of invertebrates and vertebrates. Reviews the history of life across the phyla based on the fossil record and computational phylogenetics. Explains evo-devo and the generation of anatomical novelties. Illustrates the roles of small populations, genetic drift, mutation and selection in speciation. Documents human evolution using the fossil record and evidence of dispersal across the world leading to the emergence of modern humans.




Evolution in Four Dimensions, revised edition


Book Description

A pioneering proposal for a pluralistic extension of evolutionary theory, now updated to reflect the most recent research. This new edition of the widely read Evolution in Four Dimensions has been revised to reflect the spate of new discoveries in biology since the book was first published in 2005, offering corrections, an updated bibliography, and a substantial new chapter. Eva Jablonka and Marion Lamb's pioneering argument proposes that there is more to heredity than genes. They describe four “dimensions” in heredity—four inheritance systems that play a role in evolution: genetic, epigenetic (or non-DNA cellular transmission of traits), behavioral, and symbolic (transmission through language and other forms of symbolic communication). These systems, they argue, can all provide variations on which natural selection can act. Jablonka and Lamb present a richer, more complex view of evolution than that offered by the gene-based Modern Synthesis, arguing that induced and acquired changes also play a role. Their lucid and accessible text is accompanied by artist-physician Anna Zeligowski's lively drawings, which humorously and effectively illustrate the authors' points. Each chapter ends with a dialogue in which the authors refine their arguments against the vigorous skepticism of the fictional “I.M.” (for Ipcha Mistabra—Aramaic for “the opposite conjecture”). The extensive new chapter, presented engagingly as a dialogue with I.M., updates the information on each of the four dimensions—with special attention to the epigenetic, where there has been an explosion of new research. Praise for the first edition “With courage and verve, and in a style accessible to general readers, Jablonka and Lamb lay out some of the exciting new pathways of Darwinian evolution that have been uncovered by contemporary research.” —Evelyn Fox Keller, MIT, author of Making Sense of Life: Explaining Biological Development with Models, Metaphors, and Machines “In their beautifully written and impressively argued new book, Jablonka and Lamb show that the evidence from more than fifty years of molecular, behavioral and linguistic studies forces us to reevaluate our inherited understanding of evolution.” —Oren Harman, The New Republic “It is not only an enjoyable read, replete with ideas and facts of interest but it does the most valuable thing a book can do—it makes you think and reexamine your premises and long-held conclusions.” —Adam Wilkins, BioEssays




Principles of Social Evolution


Book Description

Investigates and sets out the common principles of social evolution operating across all taxa and levels of biological organisation.




The Princeton Guide to Evolution


Book Description

The essential one-volume reference to evolution The Princeton Guide to Evolution is a comprehensive, concise, and authoritative reference to the major subjects and key concepts in evolutionary biology, from genes to mass extinctions. Edited by a distinguished team of evolutionary biologists, with contributions from leading researchers, the guide contains some 100 clear, accurate, and up-to-date articles on the most important topics in seven major areas: phylogenetics and the history of life; selection and adaptation; evolutionary processes; genes, genomes, and phenotypes; speciation and macroevolution; evolution of behavior, society, and humans; and evolution and modern society. Complete with more than 100 illustrations (including eight pages in color), glossaries of key terms, suggestions for further reading on each topic, and an index, this is an essential volume for undergraduate and graduate students, scientists in related fields, and anyone else with a serious interest in evolution. Explains key topics in some 100 concise and authoritative articles written by a team of leading evolutionary biologists Contains more than 100 illustrations, including eight pages in color Each article includes an outline, glossary, bibliography, and cross-references Covers phylogenetics and the history of life; selection and adaptation; evolutionary processes; genes, genomes, and phenotypes; speciation and macroevolution; evolution of behavior, society, and humans; and evolution and modern society




Adaptation and Natural Selection


Book Description

Biological evolution is a fact—but the many conflicting theories of evolution remain controversial even today. When Adaptation and Natural Selection was first published in 1966, it struck a powerful blow against those who argued for the concept of group selection—the idea that evolution acts to select entire species rather than individuals. Williams’s famous work in favor of simple Darwinism over group selection has become a classic of science literature, valued for its thorough and convincing argument and its relevance to many fields outside of biology. Now with a new foreword by Richard Dawkins, Adaptation and Natural Selection is an essential text for understanding the nature of scientific debate.




Mechanisms of Life History Evolution


Book Description

Life history theory seeks to explain the evolution of the major features of life cycles by analyzing the ecological factors that shape age-specific schedules of growth, reproduction, and survival and by investigating the trade-offs that constrain the evolution of these traits. Although life history theory has made enormous progress in explaining the diversity of life history strategies among species, it traditionally ignores the underlying proximate mechanisms. This novel book argues that many fundamental problems in life history evolution, including the nature of trade-offs, can only be fully resolved if we begin to integrate information on developmental, physiological, and genetic mechanisms into the classical life history framework. Each chapter is written by an established or up-and-coming leader in their respective field; they not only represent the state of the art but also offer fresh perspectives for future research. The text is divided into 7 sections that cover basic concepts (Part 1), the mechanisms that affect different parts of the life cycle (growth, development, and maturation; reproduction; and aging and somatic maintenance) (Parts 2-4), life history plasticity (Part 5), life history integration and trade-offs (Part 6), and concludes with a synthesis chapter written by a prominent leader in the field and an editorial postscript (Part 7).




Sydney Brenner's 10-on-10: The Chronicles Of Evolution


Book Description

Humans now wield a greater influence on the planet than any other species in history, and human-developed technologies like genetic engineering and artificial intelligence stand poised to overtake biological evolution. Just how did we arrive at this unique moment in human history, 14 billion years after the birth of the universe Sydney Brenner's 10-on-10: The Chronicles of Evolution brings together 24 prominent scientists and thinkers to trace the story of evolution through ten logarithmic scales of time. Through expert insights, this unique volume considers how humans found our place in the cosmos, and imagines what lies ahead.Published by Wildtype Books and distributed by World Scientific Publishing Co.




The Evolving World


Book Description

In the 150 years since Darwin, evolutionary biology has proven as essential as it is controversial, a critical concept for answering questions about everything from the genetic code and the structure of cells to the reproduction, development, and migration of animal and plant life. But today, as David P. Mindell makes undeniably clear in The Evolving World, evolutionary biology is much more than an explanatory concept. It is indispensable to the world we live in. This book provides the first truly accessible and balanced account of how evolution has become a tool with applications that are thoroughly integrated, and deeply useful, in our everyday lives and our societies, often in ways that we do not realize. When we domesticate wild species for agriculture or companionship; when we manage our exposure to pathogens and prevent or control epidemics; when we foster the diversity of species and safeguard the functioning of ecosystems: in each of these cases, Mindell shows us, evolutionary biology applies. It is at work when we recognize that humans represent a single evolutionary family with variant cultures but shared biological capabilities and motivations. And last but not least, we see here how evolutionary biology comes into play when we use knowledge of evolution to pursue justice within the legal system and to promote further scientific discovery through education and academic research. More than revealing evolution's everyday uses and value, The Evolving World demonstrates the excitement inherent in its applications--and convinces us as never before that evolutionary biology has become absolutely necessary for human existence.