Principles of Metallurgical Thermodynamics


Book Description

The Series in Metallurgy and Materials Science was initiated during the Diamond Jubilee of the Indian Institute of Metals (IIM). In the last decade the progress in the study and development of metallurgy and materials science, their applications, as well as the techniques for processing and characterizing them has been rapid and extensive. With the help of an expert editorial panel of international and national scientists, the series aims to make this information available to a wide spectrum of readers. This book is the third textbook in the series. Principles of Metallurgical Thermodynamics deals with the thermodynamics of reactive systems, with emphasis on the reactivity of metals and materials being used by metallurgical and materials scientists all over the world. Though the focus is on equilibrium thermodynamics, it also touches upon some methods to incorporate non-equilibrium effects relevant to material scientists. This knowledge will enable students to solve the challenging problems faced during operation in different materials-processing routes. It will also help in the search for new substances that might revolutionize high as well as low temperature applications because of their super-fluid and super-conducting properties, outer space environmental adaptability, and more attractive electrical, magnetic, and dielectric properties.




Principles of Extractive Metallurgy


Book Description

The Book Attempts To Present A Comprehensive View Of Extractive Metallurgy, Especially Principles Of Extractive Metallurgy In A Concise Form. This Is The First Book In This Area Which Attempts To Do It. It Has Been Written In Textbook Style. It Presents The Various Concepts Step By Step, Shows Their Importance, Deals With Elementary Quantitative Formulations, And Illustrates Through Quantitative And Qualitative Informations. The Approach Is Such That Even Undergraduate Students Would Be Able To Follow The Topics Without Much Difficulty And Without Much Of A Background In Specialized Subjects. This Is Considered To Be A Very Useful Approach In This Area Of Technology. Moreover The Inter-Disciplinary Nature Of The Subject Has Been Duely Brought Out.While Teaching Concerned Course(S) In The Undergraduate And Postgraduate Level The Authors Felt The Need Of Such A Book. The Authors Found The Books Available On The Subject Did Not Fulfill The Requirements. No Other Book Was Concerned With All Relevant Concepts. Most Of Them Laid Emphasis Either On Thermodynamic Aspects Or On Discussing Unit Processes. Transport Phenomena Are Dealt With In Entirely Different Books. Reactor Concepts Were Again Lying In Chemical Engineering Texts. The Authors Tried To Harmonize And Synthesize The Concepts In Elementary Terms For Metallurgists.The Present Book Contains A Brief Descriptive Summary Of Some Important Metallurgical Unit Processes. Subsequently It Discusses Not Only Physical Chemistry Of Metallurgical Reactions And Processes But Also Rate Phenomena Including Heat And Mass Transfer, Fluid Flow, Mass And Energy Balance, And Elements Of Reactor Engineering. A Variety Of Scientific And Engineering Aspects Of Unit Processes Have Been Discussed With Stress On The Basic Principles All Throughout. There Is An Attempt To Introduce, As Much As Possible, Quantitative Treatments And Engineering Estimates. The Latter May Often Be Approximate From The Point Of View Of Theory But Yields Results That Are Very Valuable To Both Practicing Metallurgists As Well As Others.










Principles of Extractive Metallurgy


Book Description

Rather than simply describing the processes and reactions involved in metal extraction, this book concentrates on fundamental principles to give readers an understanding of the possibilities for future developments in this field. It includes a review of the basics of thermodynamics, kinetics and engineering principles that have special importance for extractive metallurgy, to ensure that readers have the background necessary for maximum achievement. The various metallurgical unit processes (such as roasting, reduction, smelting and electrolysis) are illustrated by existing techniques for the extraction of the most common metals. Each chapter includes a bibliography of recommended reading, to aid in further study. The appendices include tables and graphs of thermodynamic qualities for most substances of metallurgical importance; these are ideal for calculating heat (enthalpy) balances and chemical equilibrium constants. SI Units are used consistently throughout the text.




Physical Chemistry of Metallurgical Processes


Book Description

This book covers various metallurgical topics, viz. roasting of sulfide minerals, matte smelting, slag, reduction of oxides and reduction smelting, interfacial phenomena, steelmaking, secondary steelmaking, role of halides in extraction of metals, refining, hydrometallurgy and electrometallurgy. Each chapter is illustrated with appropriate examples of applications of the technique in extraction of some common, reactive, rare or refractory metal together with worked out problems explaining the principle of the operation.




Introduction to the Thermodynamics of Materials, Fifth Edition


Book Description

"The CD contains data and descriptive material for making detailed thermodynamic calculations involving materials processing"--Preface.




Principles Of Classical Thermodynamics: Applied To Materials Science


Book Description

The aim of this book is to present Classical Thermodynamics in a unified way, from the most fundamental principles to non-uniform systems, thereby requiring the introduction of coarse graining methods, leading for instance to phase field methods. Solutions thermodynamics and temperature-concentration phase diagrams are covered, plus also a brief introduction to statistical thermodynamics and topological disorder. The Landau theory is included along with a general treatment of multicomponent instabilities in various types of thermodynamic applications, including phase separation and order-disorder transitions. Nucleation theory and spinodal decomposition are presented as extreme cases of a single approach involving the all-important role of fluctuations.In this way, it is hoped that this coverage will reconcile in a unified manner techniques generally presented separately in physics and materials texts.




Problems in Metallurgical Thermodynamics and Kinetics


Book Description

Problems in Metallurgical Thermodynamics and Kinetics provides an illustration of the calculations encountered in the study of metallurgical thermodynamics and kinetics, focusing on theoretical concepts and practical applications. The chapters of this book provide comprehensive account of the theories, including basic and applied numerical examples with solutions. Unsolved numerical examples drawn from a wide range of metallurgical processes are also provided at the end of each chapter. The topics discussed include the three laws of thermodynamics; Clausius-Clapeyron equation; fugacity, activity, and equilibrium constant; thermodynamics of electrochemical cells; and kinetics. This book is beneficial to undergraduate and postgraduate students in universities, polytechnics, and technical colleges.




Physical Metallurgy


Book Description

Physical metallurgy is one of the main fields of metallurgical science dealing with the development of the microstructure of metals in order to achieve desirable properties required in technological applications. Physical Metallurgy: Principles and Design focuses on the processing–structure–properties triangle as it applies to metals and alloys. It introduces the fundamental principles of physical metallurgy and the design methodologies for alloys and processing. The first part of the book discusses the structure and change of structure through phase transformations. The latter part of the books deals with plastic deformation, strengthening mechanisms, and mechanical properties as they relate to structure. The book also includes a chapter on physical metallurgy of steels and concludes by discussing the computational tools, involving computational thermodynamics and kinetics, to perform alloy and process design.