Principles of Molecular Photochemistry: An Introduction


Book Description

This text develops photochemical and photophysical concepts from a set of familiar principles. Principles of Molecular Photochemistry provides in-depth coverage of electronic spin, the concepts of electronic energy transfer and electron transfer, and the progress made in theoretical and experimental electron transfer.




Modern Molecular Photochemistry


Book Description

During the last two decades the photochemistry of organic molecules has grown into an important and pervasive branch of organic chemistry. In Modern Molecular Photochemistry, the author brings students up to date with the advances in this field - the development of the theory of photoreactions, the utilization of photoreactions in synthetic sequences, and the advancement of powerful laser techniques to study the mechanisms of photoreactions.




Applied Photochemistry


Book Description

Applied Photochemistry encompasses the major applications of the chemical effects resulting from light absorption by atoms and molecules in chemistry, physics, medicine and engineering, and contains contributions from specialists in these key areas. Particular emphasis is placed both on how photochemistry contributes to these disciplines and on what the current developments are. The book starts with a general description of the interaction between light and matter, which provides the general background to photochemistry for non-specialists. The following chapters develop the general synthetic and mechanistic aspects of photochemistry as applied to both organic and inorganic materials, together with types of materials which are useful as light absorbers, emitters, sensitisers, etc. for a wide variety of applications. A detailed discussion is presented on the photochemical processes occurring in the Earth’s atmosphere, including discussion of important current aspects such as ozone depletion. Two important distinct, but interconnected, applications of photochemistry are in photocatalytic treatment of wastes and in solar energy conversion. Semiconductor photochemistry plays an important role in these and is discussed with reference to both of these areas. Free radicals and reactive oxygen species are of major importance in many chemical, biological and medical applications of photochemistry, and are discussed in depth. The following chapters discuss the relevance of using light in medicine, both with various types of phototherapy and in medical diagnostics. The development of optical sensors and probes is closely related to diagnostics, but is also relevant to many other applications, and is discussed separately. Important aspects of applied photochemistry in electronics and imaging, through processes such as photolithography, are discussed and it is shown how this is allowing the increasing miniaturisation of semiconductor devices for a wide variety of electronics applications and the development of nanometer scale devices. The final two chapters provide the basic ideas necessary to set up a photochemical laboratory and to characterise excited states. This book is aimed at those in science, engineering and medicine who are interested in applying photochemistry in a broad spectrum of areas. Each chapter has the basic theories and methods for its particular applications and directs the reader to the current, important literature in the field, making Applied Photochemistry suitable for both the novice and the experienced photochemist.







Principles and Applications of Photochemistry


Book Description

A modern introduction to photochemistry covering the principles and applications of this topic from both a physical chemistry and organic chemistry angle. Coverage ranges from subjects such as lasers, the atmosphere, biochemistry, medicine and industry and also includes the latest developments in relation to photochemical molecular machines, photodynamic therapy applied to cancer, photochromatic imaging, and photostabilizers. Little in the way of prior knowledge is assumed, and the reader is aided by numerous worked examples, learning objectives, chapter summaries and problems.




Photochemistry of Organic Compounds


Book Description

Photochemistry of Organic Compounds: From Concepts to Practice provides a hands-on guide demonstrating the underlying principles of photochemistry and, by reference to a range of organic reaction types, its effective use in the synthesis of new organic compounds and in various applications. The book presents a complete and methodical approach to the topic, Working from basic principles, discussing key techniques and studies of reactive intermediates, and illustrating synthetic photochemical procedures. Incorporating special topics and case studies covering various applications of photochemistry in chemistry, environmental sciences, biochemistry, physics, medicine, and industry. Providing extensive references to the original literature and to review articles. Concluding with a chapter on retrosynthetic photochemistry, listing key reactions to aid the reader in designing their own synthetic pathways. This book will be a valuable source of information and inspiration for postgraduates as well as professionals from a wide range of chemical and natural sciences.




Molecular Photobiology


Book Description

Molecular Photobiology: Inactivation and Recovery describes the deleterious photochemical reactions occurring in biological systems. This book is composed of 10 chapters that specifically tackle light interactions in the ultraviolet region of the spectrum resulting to damaged proteins and nucleic acids in living systems. This book deals first with the kinds of photochemical reactions that can occur and the possible effects of photochemistry on molecular, cellular, and organismal levels. The succeeding chapters highlight the principle of recovery mechanisms, wherein evidence shows that cells can repair their damaged genetic material, and thus recover from the otherwise inactivating effects of light. The remaining chapters are devoted to the comparison and contrast of some biological effects of ionizing radiation and those of ultraviolet radiation. This book is of value to molecular photobiologists, photochemists, biochemists, and radiation scientists and researchers.




Molecular Photophysics and Spectroscopy


Book Description

This book provides a fresh, photon‐based description of modern molecular spectroscopy and photophysics, with applications drawn from chemistry, biology, physics and materials science. The concise and detailed approach includes some of the most recent devel




Organic Photochemistry


Book Description

Organic Photochemistry outlines the principles, techniques and well-known reactions occurring in organic molecules and also illustrates more complex photochemical transformations occurring in organic chemistry. Many photochemical transformations convert simple molecules into extremely complex products with an ease not approached by the standard synthetic chemistry practiced in the laboratory. In the earlier chapters, the author outlines the principles, techniques and some of the well-known reactions occurring in organic molecules and later illustrates more complex photochemical transformations occuring in organic chemistry. Experimental techniques are included to encourage novices. Topics are emphasized where structural transformations can be formulated chemically. Practical applications are collected together. The book starts at a comfortably simple level with enough examples to provide an introduction to the diversity of photochemical reactions. - Includes experimental techniques to encourage novices - Emphasizes topics where structural transformations can be formulated chemically - Collects and presents practical applications - Written in a simple style including enough examples to serve as an introduction to the diversity of photochemical reactions




Principles of Inorganic Chemistry


Book Description

Aimed at senior undergraduates and first-year graduate students, this book offers a principles-based approach to inorganic chemistry that, unlike other texts, uses chemical applications of group theory and molecular orbital theory throughout as an underlying framework. This highly physical approach allows students to derive the greatest benefit of topics such as molecular orbital acid-base theory, band theory of solids, and inorganic photochemistry, to name a few. Takes a principles-based, group and molecular orbital theory approach to inorganic chemistry The first inorganic chemistry textbook to provide a thorough treatment of group theory, a topic usually relegated to only one or two chapters of texts, giving it only a cursory overview Covers atomic and molecular term symbols, symmetry coordinates in vibrational spectroscopy using the projection operator method, polyatomic MO theory, band theory, and Tanabe-Sugano diagrams Includes a heavy dose of group theory in the primary inorganic textbook, most of the pedagogical benefits of integration and reinforcement of this material in the treatment of other topics, such as frontier MO acid--base theory, band theory of solids, inorganic photochemistry, the Jahn-Teller effect, and Wade's rules are fully realized Very physical in nature compare to other textbooks in the field, taking the time to go through mathematical derivations and to compare and contrast different theories of bonding in order to allow for a more rigorous treatment of their application to molecular structure, bonding, and spectroscopy Informal and engaging writing style; worked examples throughout the text; unanswered problems in every chapter; contains a generous use of informative, colorful illustrations