Principles of Nano-Optics


Book Description

Fully revised and in its second edition, this standard reference on nano-optics is ideal for graduate students and researchers alike.




Principles of Nano-Optics


Book Description

Nano-optics is the study of optical phenomena and techniques on the nanometer scale, that is, near or beyond the diffraction limit of light. It is an emerging field of study, motivated by the rapid advance of nanoscience and nanotechnology which require adequate tools and strategies for fabrication, manipulation and characterization at this scale. In this 2006 text the authors provide a comprehensive overview of the theoretical and experimental concepts necessary to understand and work in nano-optics. With a very broad perspective, they cover optical phenomena relevant to the nanoscale across diverse areas ranging from quantum optics to biophysics, introducing and extensively describing all of the significant methods. Written for graduate students who want to enter the field, the text includes problem sets to reinforce and extend the discussion. It is also a valuable reference for researchers and course teachers.




Nano and Quantum Optics


Book Description

This classroom-tested textbook is a modern primer on the rapidly developing field of quantum nano optics which investigates the optical properties of nanosized materials. The essentials of both classical and quantum optics are presented before embarking through a stimulating selection of further topics, such as various plasmonic phenomena, thermal effects, open quantum systems, and photon noise. Didactic and thorough in style, and requiring only basic knowledge of classical electrodynamics, the text provides all further physics background and additional mathematical and computational tools in a self-contained way. Numerous end-of-chapter exercises allow students to apply and test their understanding of the chapter topics and to refine their problem-solving techniques.




Introduction to Nanophotonics


Book Description

Nanophotonics is where photonics merges with nanoscience and nanotechnology, and where spatial confinement considerably modifies light propagation and light-matter interaction. Describing the basic phenomena, principles, experimental advances and potential impact of nanophotonics, this graduate-level textbook is ideal for students in physics, optical and electronic engineering and materials science. The textbook highlights practical issues, material properties and device feasibility, and includes the basic optical properties of metals, semiconductors and dielectrics. Mathematics is kept to a minimum and theoretical issues are reduced to a conceptual level. Each chapter ends in problems so readers can monitor their understanding of the material presented. The introductory quantum theory of solids and size effects in semiconductors are considered to give a parallel discussion of wave optics and wave mechanics of nanostructures. The physical and historical interplay of wave optics and quantum mechanics is traced. Nanoplasmonics, an essential part of modern photonics, is also included.




Introduction to Micro- and Nanooptics


Book Description

Dieses erste Lehrbuch, das Mikro- und Nanooptik unter einem Dach behandelt, führt Sie in Physik, Technologie und Schlüsselanwendungen gleichermaßen gründlich ein. Zunächst geht es um die Physik des Lichts, ergänzt durch Kapitel zu brechenden und beugenden optischen Elementen. Die erfahrenen Autoren erläutern lithographische und andere Herstellungsverfahren für mikro- und nanooptische Bauelemente vor. Im zweiten Teil werden detail- und kenntnisreich optische Mikrosysteme und Wellenleiter sowie optischen Nanostrukturen wie photonische Kristalle und Metamaterialien behandelt. Jedes Kapitel enthält Fragen und Aufgaben. Das Lehrbuch ist geeignet für Vorlesungen in Physik und angewandter Optik.




Principles of Nanophotonics


Book Description

Coauthored by the developer of nanophotonics,this book outlines physically intuitive concepts of the subject using a novel theoretical framework that differs from conventional wave optics. After reviewing the background, history, and current status of research and development in nanophotonics and related technologies, the authors present a unique theoretical model to describe the interactions among nanometric material systems via optical near-fields. They then explore nanophotonic devices and fabrication techniques and provide examples of qualitative innovation. The final chapter looks at how the assembly of nanophotonic devices produces a nanophotonic system.




Optical Antennas


Book Description

This consistent and systematic review of recent advances in optical antenna theory and practice brings together leading experts in the fields of electrical engineering, nano-optics and nano-photonics, physical chemistry and nanofabrication. Fundamental concepts and functionalities relevant to optical antennas are explained, together with key principles for optical antenna modelling, design and characterisation. Recognising the tremendous potential of this technology, practical applications are also outlined. Presenting a clear translation of the concepts of radio antenna design, near-field optics and field-enhanced spectroscopy into optical antennas, this interdisciplinary book is an indispensable resource for researchers and graduate students in engineering, optics and photonics, physics and chemistry.




Modern Introduction to Surface Plasmons


Book Description

This book introduces graduate students in physics, optics, materials science and electrical engineering to surface plasmons, and applications of surface plasmon physics.




Applied Optics Fundamentals and Device Applications


Book Description

How does the field of optical engineering impact biotechnology? Perhaps for the first time, Applied Optics Fundamentals and Device Applications: Nano, MOEMS, and Biotechnology answers that question directly by integrating coverage of the many disciplines and applications involved in optical engineering, and then examining their applications in nanobiotechnology. Written by a senior U.S. Army research scientist and pioneer in the field of optical engineering, this book addresses the exponential growth in materials, applications, and cross-functional relevance of the many convergent disciplines making optical engineering possible, including nanotechnology, MEMS, (MOEMS), and biotechnology. Integrates Coverage of MOEMS, Optics, and Nanobiotechnology—and Their Market Applications Providing an unprecedented interdisciplinary perspective of optics technology, this book describes everything from core principles and fundamental relationships, to emerging technologies and practical application of devices and systems—including fiber-optic sensors, integrated and electro-optics, and specialized military applications. The author places special emphasis on: Fiber sensor systems Electro-optics and acousto-optics Optical computing and signal processing Optical device performance Thin film magnetic memory MEMS, MOEMS, nano- and bionanotechnologies Optical diagnostics and imaging Integrated optics Design constraints for materials, manufacturing, and application space Bridging the technology gaps between interrelated fields, this reference is a powerful tool for students, engineers and scientists in the electrical, chemical, mechanical, biological, aerospace, materials, and optics fields. Its value also extends to applied physicists and professionals interested in the relationships between emerging technologies and cross-disciplinary opportunities. Author Mark A. Mentzer is a pioneer in the field of optical engineering. He is a senior research scientist at the U.S. Army Research Laboratory in Maryland. Much of his current work involves extending the fields of optical engineering and solid state physics into the realm of biochemistry and molecular biology, as well as structured research in biophotonics.




Principles of Photonics


Book Description

With this self-contained and comprehensive text, students will gain a detailed understanding of the fundamental concepts and major principles of photonics. Assuming only a basic background in optics, readers are guided through key topics such as the nature of optical fields, the properties of optical materials, and the principles of major photonic functions regarding the generation, propagation, coupling, interference, amplification, modulation, and detection of optical waves or signals. Numerous examples and problems are provided throughout to enhance understanding, and a solutions manual containing detailed solutions and explanations is available online for instructors. This is the ideal resource for electrical engineering and physics undergraduates taking introductory, single-semester or single-quarter courses in photonics, providing them with the knowledge and skills needed to progress to more advanced courses on photonic devices, systems and applications.