Principles of Population Genetics


Book Description

Principles of Population Genetics, Third Edition gives a balanced presentation of theory and observation for students at the undergraduate and graduate levels. Applications of the principles discussed are illustrated by numerous worked examples.




Population Genetics


Book Description

This book aims to make population genetics approachable, logical and easily understood. To achieve these goals, the book’s design emphasizes well explained introductions to key principles and predictions. These are augmented with case studies as well as illustrations along with introductions to classical hypotheses and debates. Pedagogical features in the text include: Interact boxes that guide readers step-by-step through computer simulations using public domain software. Math boxes that fully explain mathematical derivations. Methods boxes that give insight into the use of actual genetic data. Numerous Problem boxes are integrated into the text to reinforce concepts as they are encountered. Dedicated website at www.wiley.com/go/hamiltongenetics This text also offers a highly accessible introduction to coalescent theory, the major conceptual advance in population genetics of the last two decades.




Principles of Biology


Book Description

The Principles of Biology sequence (BI 211, 212 and 213) introduces biology as a scientific discipline for students planning to major in biology and other science disciplines. Laboratories and classroom activities introduce techniques used to study biological processes and provide opportunities for students to develop their ability to conduct research.




A Primer of Population Genetics


Book Description

The use of molecular methods to study genetic polymorphisms has made a familiarity with population genetics essential for any biologist whose work is at the population level. A Primer of Population Genetics, Third Edition provides a concise but comprehensive introduction to population genetics. The four chapters of the book address genetic variation, the causes of evolution, molecular population genetics, and the genetic architecture of complex traits. Chapter-end problems reinforce ideas and, while there are some equations, the emphasis is on explanation rather than derivation.




A Primer of Molecular Population Genetics


Book Description

What are the genomic signatures of adaptations in DNA? How often does natural selection dictate changes to DNA? How does the ebb and flow in the abundance of individuals over time get marked onto chromosomes to record genetic history? Molecular population genetics seeks to answer such questions by explaining genetic variation and molecular evolution from micro-evolutionary principles. It provides a way to learn about how evolution works and how it shapes species by incorporating molecular details of DNA as the heritable material. It enables us to understand the logic of how mutations originate, change in abundance in populations, and become fixed as DNA sequence divergence between species. With the revolutionary advances in genomic data acquisition, understanding molecular population genetics is now a fundamental requirement for today's life scientists. These concepts apply in analysis of personal genomics, genome-wide association studies, landscape and conservation genetics, forensics, molecular anthropology, and selection scans. This book introduces, in an accessible way, the bare essentials of the theory and practice of molecular population genetics.




Introduction to Population Genetics


Book Description

Making the theory of population genetics relevant to readers, this book explains the related mathematics with a logical organization. It presents the quantitative aspects of population genetics, and employs examples of human genetics, medical evolution, human evolution, and endangered species. For an introduction to, and understanding of, population genetics.




Genetics of Populations


Book Description

The Fourth Edition of Genetics of Populations is the most current, comprehensive, and accessible introduction to the field for advanced undergraduate and graduate students, and researchers in genetics, evolution, conservation, and related fields. In the past several years, interest in the application of population genetics principles to new molecular data has increased greatly, and Dr. Hedrick's new edition exemplifies his commitment to keeping pace with this dynamic area of study. Reorganized to allow students to focus more sharply on key material, the Fourth Edition integrates coverage of theoretical issues with a clear presentation of experimental population genetics and empirical data. Drawing examples from both recent and classic studies, and using a variety of organisms to illustrate the vast developments of population genetics, this text provides students and researchers with the most comprehensive resource in the field.




Human Population Genetics and Genomics


Book Description

Human Population Genetics and Genomics provides researchers/students with knowledge on population genetics and relevant statistical approaches to help them become more effective users of modern genetic, genomic and statistical tools. In-depth chapters offer thorough discussions of systems of mating, genetic drift, gene flow and subdivided populations, human population history, genotype and phenotype, detecting selection, units and targets of natural selection, adaptation to temporally and spatially variable environments, selection in age-structured populations, and genomics and society. As human genetics and genomics research often employs tools and approaches derived from population genetics, this book helps users understand the basic principles of these tools. In addition, studies often employ statistical approaches and analysis, so an understanding of basic statistical theory is also needed. Comprehensively explains the use of population genetics and genomics in medical applications and research Discusses the relevance of population genetics and genomics to major social issues, including race and the dangers of modern eugenics proposals Provides an overview of how population genetics and genomics helps us understand where we came from as a species and how we evolved into who we are now




Population Genetics:


Book Description

I have for a number of years taught a course in population genetics for students interested in plant and animal breeding. The objective of the course has been to lay a foundation in population genetics for the concepts of quantitative genetics which are introduced in the last third of the course. I have not been able to find an appropriate text for this purpose. For a quarter of a century, Falconer's Introduction to Quantitative Genetics has been the standard, and excellent, text in that subject. For my purposes, however, this text is not sufficiently detailed in the population genetics basis for quantitative theory. A number of good texts in population genetics are available, of which Li's First Course in Population Genetics is didactically the best. But these texts are directed toward the genetics of natural populations, rather than domestic populations, breeding under human control. They also tend to treat quantitative genetics gingerly, if at all. I have therefore developed the present text from my teaching notes. The chapters of this book are labeled "Lectures". Each is intended to correspond approximately to the amount of material which can be covered in a 50-minute lecture. Divisions are, of course, dictated by the natural divisions of the subject matter, and the lectures are therefore not of uniform length. Nevertheless, in so far as possible, an attempt has been made to make the average length a lecture's worth.




Epigenetic Inheritance and Evolution


Book Description

Does the inheritance of acquired characteristics play a significant role in evolution? In this book, Eva Jablonka and Marion J. Lamb attempt to answer that question with an original, provocative exploration of the nature and origin of hereditary variations. Starting with a historical account of Lamarck's ideas and the reasons they have fallen in disrepute, the authors go on to challenge the prevailing assumption that all heritable variation is random and the result of variation in DNA base sequences. They also detail recent breakthroughs in our understanding of the molecular mechanisms underlying inheritance--including several pathways not envisioned by classical population genetics--and argue that these advances need to be more fully incorporated into mainstream evolutionary theory. Throughout, the book offers a new look at the evidence for and against the hereditability of environmentally induced changes, and addresses timely questions about the importance of non-Mendelian inheritance. A glossary and extensive list of references round out the book. Urging a reconsideration of the present DNA-centric view prevalent in the field, Epigentic Inheritance and Evolution will make fascinating and important reading for students and researchers in evolution, genetics, ecology, molecular biology, developmental biology, and the history and philosophy of science.