Principles of Random Variate Generation


Book Description

An up-to-date account of the theory and practice of generating random variates from probability distributions is presented in this accessible text. After a brief introduction to simulation, the author discusses the general principles for generating and testing uniform and non-uniform variates. These techniques are applied to univariate and multivariate distributions, Markov processes, and order statistics. Dr. Dagpunar has included Fortran 77 programs for generating the more familiar distributions and a set of graphical aids for the manual generation of variates. Competing methods are also compared and their advantages and disadvantages discussed. In addition, algorithms throughout the book enable readers to generate variates from selected distributions, making this an invaluable guide for statisticians, operational researchers, computer scientists, and postgraduates engaged in computer simulation.




Non-Uniform Random Variate Generation


Book Description

Thls text ls about one small fteld on the crossroads of statlstlcs, operatlons research and computer sclence. Statistleians need random number generators to test and compare estlmators before uslng them ln real l fe. In operatlons research, random numbers are a key component ln arge scale slmulatlons. Computer sclen tlsts need randomness ln program testlng, game playlng and comparlsons of algo rlthms. The appl catlons are wlde and varled. Yet all depend upon the same com puter generated random numbers. Usually, the randomness demanded by an appl catlon has some bullt-ln structure: typlcally, one needs more than just a sequence of Independent random blts or Independent uniform 0,1] random vari ables. Some users need random variables wlth unusual densltles, or random com blnatorlal objects wlth speclftc propertles, or random geometrlc objects, or ran dom processes wlth weil deftned dependence structures. Thls ls preclsely the sub ject area of the book, the study of non-uniform random varlates. The plot evolves around the expected complexlty of random varlate genera tlon algorlthms. We set up an ldeal zed computatlonal model (wlthout overdolng lt), we lntroduce the notlon of unlformly bounded expected complexlty, and we study upper and lower bounds for computatlonal complexlty. In short, a touch of computer sclence ls added to the fteld. To keep everythlng abstract, no tlmlngs or computer programs are lncluded. Thls was a Iabor of Iove. George Marsagl a created CS690, a course on ran dom number generat on at the School of Computer Sclence of McG ll Unlverslty."




Automatic Nonuniform Random Variate Generation


Book Description

The recent concept of universal (also called automatic or black-box) random variate generation can only be found dispersed in the literature. Being unique in its overall organization, the book covers not only the mathematical and statistical theory but also deals with the implementation of such methods. All algorithms introduced in the book are designed for practical use in simulation and have been coded and made available by the authors. Examples of possible applications of the presented algorithms (including option pricing, VaR and Bayesian statistics) are presented at the end of the book.




Automatic Nonuniform Random Variate Generation


Book Description

Non-uniform random variate generation is an established research area in the intersection of mathematics, statistics and computer science. Although random variate generation with popular standard distributions have become part of every course on discrete event simulation and on Monte Carlo methods, the recent concept of universal (also called automatic or black-box) random variate generation can only be found dispersed in literature. This new concept has great practical advantages that are little known to most simulation practitioners. Being unique in its overall organization the book covers not only the mathematical and statistical theory, but also deals with the implementation of such methods. All algorithms introduced in the book are designed for practical use in simulation and have been coded and made available by the authors. Examples of possible applications of the presented algorithms (including option pricing, VaR and Bayesian statistics) are presented at the end of the book.




Random Number Generation and Monte Carlo Methods


Book Description

Monte Carlo simulation has become one of the most important tools in all fields of science. This book surveys the basic techniques and principles of the subject, as well as general techniques useful in more complicated models and in novel settings. The emphasis throughout is on practical methods that work well in current computing environments.




Random Number Generation and Quasi-Monte Carlo Methods


Book Description

This volume contains recent work in uniform pseudorandom number generation and quasi-Monte Carlo methods, and stresses the interplay between them.




Simulation


Book Description

Ross's Simulation, Fourth Edition introduces aspiring and practicing actuaries, engineers, computer scientists and others to the practical aspects of constructing computerized simulation studies to analyze and interpret real phenomena. Readers learn to apply results of these analyses to problems in a wide variety of fields to obtain effective, accurate solutions and make predictions about future outcomes. This text explains how a computer can be used to generate random numbers, and how to use these random numbers to generate the behavior of a stochastic model over time. It presents the statistics needed to analyze simulated data as well as that needed for validating the simulation model. - More focus on variance reduction, including control variables and their use in estimating the expected return at blackjack and their relation to regression analysis - A chapter on Markov chain monte carlo methods with many examples - Unique material on the alias method for generating discrete random variables




Independent Random Sampling Methods


Book Description

This book systematically addresses the design and analysis of efficient techniques for independent random sampling. Both general-purpose approaches, which can be used to generate samples from arbitrary probability distributions, and tailored techniques, designed to efficiently address common real-world practical problems, are introduced and discussed in detail. In turn, the monograph presents fundamental results and methodologies in the field, elaborating and developing them into the latest techniques. The theory and methods are illustrated with a varied collection of examples, which are discussed in detail in the text and supplemented with ready-to-run computer code. The main problem addressed in the book is how to generate independent random samples from an arbitrary probability distribution with the weakest possible constraints or assumptions in a form suitable for practical implementation. The authors review the fundamental results and methods in the field, address the latest methods, and emphasize the links and interplay between ostensibly diverse techniques.




Bootstrapping and Related Techniques


Book Description

This book contains 30 selected, refereed papers from an in- ternational conference on bootstrapping and related techni- ques held in Trier 1990. Thepurpose of the book is to in- form about recent research in the area of bootstrap, jack- knife and Monte Carlo Tests. Addressing the novice and the expert it covers as well theoretical as practical aspects of these statistical techniques. Potential users in different disciplines as biometry, epidemiology, computer science, economics and sociology but also theoretical researchers s- hould consult the book to be informed on the state of the art in this area.




Continuous Bivariate Distributions


Book Description

Along with a review of general developments relating to bivariate distributions, this volume also covers copulas, a subject which has grown immensely in recent years. In addition, it examines conditionally specified distributions and skewed distributions.