Principles of Speech Coding


Book Description

It is becoming increasingly apparent that all forms of communication-including voice-will be transmitted through packet-switched networks based on the Internet Protocol (IP). Therefore, the design of modern devices that rely on speech interfaces, such as cell phones and PDAs, requires a complete and up-to-date understanding of the basics of speech




Speech Coding Algorithms


Book Description

Speech coding is a highly mature branch of signal processing deployed in products such as cellular phones, communication devices, and more recently, voice over internet protocol This book collects many of the techniques used in speech coding and presents them in an accessible fashion Emphasizes the foundation and evolution of standardized speech coders, covering standards from 1984 to the present The theory behind the applications is thoroughly analyzed and proved




Discrete-Time Speech Signal Processing


Book Description

Essential principles, practical examples, current applications, and leading-edge research. In this book, Thomas F. Quatieri presents the field's most intensive, up-to-date tutorial and reference on discrete-time speech signal processing. Building on his MIT graduate course, he introduces key principles, essential applications, and state-of-the-art research, and he identifies limitations that point the way to new research opportunities. Quatieri provides an excellent balance of theory and application, beginning with a complete framework for understanding discrete-time speech signal processing. Along the way, he presents important advances never before covered in a speech signal processing text book, including sinusoidal speech processing, advanced time-frequency analysis, and nonlinear aeroacoustic speech production modeling. Coverage includes: Speech production and speech perception: a dual view Crucial distinctions between stochastic and deterministic problems Pole-zero speech models Homomorphic signal processing Short-time Fourier transform analysis/synthesis Filter-bank and wavelet analysis/synthesis Nonlinear measurement and modeling techniques The book's in-depth applications coverage includes speech coding, enhancement, and modification; speaker recognition; noise reduction; signal restoration; dynamic range compression, and more. Principles of Discrete-Time Speech Processing also contains an exceptionally complete series of examples and Matlab exercises, all carefully integrated into the book's coverage of theory and applications.




Springer Handbook of Speech Processing


Book Description

This handbook plays a fundamental role in sustainable progress in speech research and development. With an accessible format and with accompanying DVD-Rom, it targets three categories of readers: graduate students, professors and active researchers in academia, and engineers in industry who need to understand or implement some specific algorithms for their speech-related products. It is a superb source of application-oriented, authoritative and comprehensive information about these technologies, this work combines the established knowledge derived from research in such fast evolving disciplines as Signal Processing and Communications, Acoustics, Computer Science and Linguistics.




Speech Coding


Book Description

This book provides scientific understanding of the most central techniques used in speech coding both for advanced students as well as professionals with a background in speech audio and or digital signal processing. It provides a clear connection between the Why’s?, How’s?, and What’s, such that the necessity, purpose and solutions provided by tools should be always within sight, as well as their strengths and weaknesses in each respect. Equivalently, this book sheds light on the following perspectives for each technology presented: Objective: What do we want to achieve and especially why is this goal important? Resource / Information: What information is available and how can it be useful? Resource / Platform: What kind of platforms are we working with and what are the capabilities/restrictions of those platforms? This includes properties such as computational, memory, acoustic and transmission capacity of devices used. Solutions: Which solutions have been proposed and how can they be used to reach the stated goals? Strengths and weaknesses: In which ways do the solutions fulfill the objectives and where are they insufficient? Are resources used efficiently? This book concentrates solely on code excited linear prediction and its derivatives since mainstream speech codecs are based on linear prediction It also concentrates exclusively on time domain techniques because frequency domain tools are to a large extent common with audio codecs.




Digital Coding of Waveforms


Book Description




Audio and Speech Processing with MATLAB


Book Description

Speech and audio processing has undergone a revolution in preceding decades that has accelerated in the last few years generating game-changing technologies such as truly successful speech recognition systems; a goal that had remained out of reach until very recently. This book gives the reader a comprehensive overview of such contemporary speech and audio processing techniques with an emphasis on practical implementations and illustrations using MATLAB code. Core concepts are firstly covered giving an introduction to the physics of audio and vibration together with their representations using complex numbers, Z transforms and frequency analysis transforms such as the FFT. Later chapters give a description of the human auditory system and the fundamentals of psychoacoustics. Insights, results, and analyses given in these chapters are subsequently used as the basis of understanding of the middle section of the book covering: wideband audio compression (MP3 audio etc.), speech recognition and speech coding. The final chapter covers musical synthesis and applications describing methods such as (and giving MATLAB examples of) AM, FM and ring modulation techniques. This chapter gives a final example of the use of time-frequency modification to implement a so-called phase vocoder for time stretching (in MATLAB). Features A comprehensive overview of contemporary speech and audio processing techniques from perceptual and physical acoustic models to a thorough background in relevant digital signal processing techniques together with an exploration of speech and audio applications. A carefully paced progression of complexity of the described methods; building, in many cases, from first principles. Speech and wideband audio coding together with a description of associated standardised codecs (e.g. MP3, AAC and GSM). Speech recognition: Feature extraction (e.g. MFCC features), Hidden Markov Models (HMMs) and deep learning techniques such as Long Short-Time Memory (LSTM) methods. Book and computer-based problems at the end of each chapter. Contains numerous real-world examples backed up by many MATLAB functions and code.




Speech and Audio Signal Processing


Book Description

When Speech and Audio Signal Processing published in 1999, it stood out from its competition in its breadth of coverage and its accessible, intutiont-based style. This book was aimed at individual students and engineers excited about the broad span of audio processing and curious to understand the available techniques. Since then, with the advent of the iPod in 2001, the field of digital audio and music has exploded, leading to a much greater interest in the technical aspects of audio processing. This Second Edition will update and revise the original book to augment it with new material describing both the enabling technologies of digital music distribution (most significantly the MP3) and a range of exciting new research areas in automatic music content processing (such as automatic transcription, music similarity, etc.) that have emerged in the past five years, driven by the digital music revolution. New chapter topics include: Psychoacoustic Audio Coding, describing MP3 and related audio coding schemes based on psychoacoustic masking of quantization noise Music Transcription, including automatically deriving notes, beats, and chords from music signals. Music Information Retrieval, primarily focusing on audio-based genre classification, artist/style identification, and similarity estimation. Audio Source Separation, including multi-microphone beamforming, blind source separation, and the perception-inspired techniques usually referred to as Computational Auditory Scene Analysis (CASA).







Speech Communication


Book Description