Principles of the Theory of Solids


Book Description

Professor Ziman's classic textbook on the theory of solids was first pulished in 1964. This paperback edition is a reprint of the second edition, which was substantially revised and enlarged in 1972. The value and popularity of this textbook is well attested by reviewers' opinions and by the existence of several foreign language editions, including German, Italian, Spanish, Japanese, Polish and Russian. The book gives a clear exposition of the elements of the physics of perfect crystalline solids. In discussing the principles, the author aims to give students an appreciation of the conditions which are necessary for the appearance of the various phenomena. A self-contained mathematical account is given of the simplest model that will demonstrate each principle. A grounding in quantum mechanics and knowledge of elementary facts about solids is assumed. This is therefore a textbook for advanced undergraduates and is also appropriate for graduate courses.




Principles of the Theory of Solids


Book Description

"...an admirable book. Indeed, it scarcely needs my commendation: It is already being widely used as a graduate text on both sides of the Atlantic." Nature




Solid State Theory


Book Description

DIVThorough, modern study of solid state physics; solid types and symmetry, electron states, electronic properties and cooperative phenomena. /div




Basic Aspects of the Quantum Theory of Solids


Book Description

Aimed at graduate students and researchers, this book covers the key aspects of the modern quantum theory of solids, including up-to-date ideas such as quantum fluctuations and strong electron correlations. It presents in the main concepts of the modern quantum theory of solids, as well as a general description of the essential theoretical methods required when working with these systems. Diverse topics such as general theory of phase transitions, harmonic and anharmonic lattices, Bose condensation and superfluidity, modern aspects of magnetism including resonating valence bonds, electrons in metals, and strong electron correlations are treated using unifying concepts of order and elementary excitations. The main theoretical tools used to treat these problems are introduced and explained in a simple way, and their applications are demonstrated through concrete examples.




Symmetry Principles in Solid State and Molecular Physics


Book Description

High-level text applies group theory to physics problems, develops methods for solving molecular vibration problems and for determining the form of crystal tensors, develops translational properties of crystals, more. 1974 edition.




Electrons and Phonons


Book Description

This is a classic text of its time in condensed matter physics.




Principles of Condensed Matter Physics


Book Description

Now in paperback, this book provides an overview of the physics of condensed matter systems. Assuming a familiarity with the basics of quantum mechanics and statistical mechanics, the book establishes a general framework for describing condensed phases of matter, based on symmetries and conservation laws. It explores the role of spatial dimensionality and microscopic interactions in determining the nature of phase transitions, as well as discussing the structure and properties of materials with different symmetries. Particular attention is given to critical phenomena and renormalization group methods. The properties of liquids, liquid crystals, quasicrystals, crystalline solids, magnetically ordered systems and amorphous solids are investigated in terms of their symmetry, generalised rigidity, hydrodynamics and topological defect structure. In addition to serving as a course text, this book is an essential reference for students and researchers in physics, applied physics, chemistry, materials science and engineering, who are interested in modern condensed matter physics.




Principles of Solid Mechanics


Book Description

Evolving from more than 30 years of research and teaching experience, Principles of Solid Mechanics offers an in-depth treatment of the application of the full-range theory of deformable solids for analysis and design. Unlike other texts, it is not either a civil or mechanical engineering text, but both. It treats not only analysis but incorporates




Solid State Physics


Book Description

Intended for a two semester advanced undergraduate or graduate course in Solid State Physics, this treatment offers modern coverage of the theory and related experiments, including the group theoretical approach to band structures, Moessbauer recoil free fraction, semi-classical electron theory, magnetoconductivity, electron self-energy and Landau theory of Fermi liquid, and both quantum and fractional quantum Hall effects. Integrated throughout are developments from the newest semiconductor devices, e.g. space charge layers, quantum wells and superlattices. The first half includes all material usually covered in the introductory course, but in greater depth than most introductory textbooks. The second half includes most of the important developments in solid-state researches of the past half century, addressing e.g. optical and electronic properties such as collective bulk and surface modes and spectral function of a quasiparticle, which is a basic concept for understanding LEED intensities, X ray fine structure spectroscopy and photoemission. So both the fundamental principles and most recent advances in solid state physics are explained in a class-tested tutorial style, with end-of-chapter exercises for review and reinforcement of key concepts and calculations.




Quantum Chemistry of Solids


Book Description

This book delivers a comprehensive account of the main features and possibilities of LCAO methods for the first principles calculations of electronic structure of periodic systems. The first part describes the basic theory underlying the LCAO methods applied to periodic systems and the use of wave-function-based, density-based (DFT) and hybrid hamiltonians. The second part deals with the applications of LCAO methods for calculations of bulk crystal properties.