Theory and Applications of Computational Chemistry


Book Description

Computational chemistry is a means of applying theoretical ideas using computers and a set of techniques for investigating chemical problems within which common questions vary from molecular geometry to the physical properties of substances. Theory and Applications of Computational Chemistry: The First Forty Years is a collection of articles on the emergence of computational chemistry. It shows the enormous breadth of theoretical and computational chemistry today and establishes how theory and computation have become increasingly linked as methodologies and technologies have advanced. Written by the pioneers in the field, the book presents historical perspectives and insights into the subject, and addresses new and current methods, as well as problems and applications in theoretical and computational chemistry. Easy to read and packed with personal insights, technical and classical information, this book provides the perfect introduction for graduate students beginning research in this area. It also provides very readable and useful reviews for theoretical chemists.* Written by well-known leading experts * Combines history, personal accounts, and theory to explain much of the field of theoretical and compuational chemistry* Is the perfect introduction to the field




An Introduction to Theoretical Chemistry


Book Description

Textbook on modern theoretical chemistry suitable for advanced undergraduate or graduate students.




Group Theory and Chemistry


Book Description

Concise, self-contained introduction to group theory and its applications to chemical problems. Symmetry, matrices, molecular vibrations, transition metal chemistry, more. Relevant math included. Advanced-undergraduate/graduate-level. 1973 edition.




Computational Chemistry and Molecular Modeling


Book Description

The gap between introductory level textbooks and highly specialized monographs is filled by this modern textbook. It provides in one comprehensive volume the in-depth theoretical background for molecular modeling and detailed descriptions of the applications in chemistry and related fields like drug design, molecular sciences, biomedical, polymer and materials engineering. Special chapters on basic mathematics and the use of respective software tools are included. Numerous numerical examples, exercises and explanatory illustrations as well as a web site with application tools (http://www.amrita.edu/cen/ccmm) support the students and lecturers.




Computational Chemistry


Book Description

Computational chemistry has become extremely important in the last decade, being widely used in academic and industrial research. Yet there have been few books designed to teach the subject to nonspecialists. Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics is an invaluable tool for teaching and researchers alike. The book provides an overview of the field, explains the basic underlying theory at a meaningful level that is not beyond beginners, and it gives numerous comparisons of different methods with one another and with experiment. The following concepts are illustrated and their possibilities and limitations are given: - potential energy surfaces; - simple and extended Hückel methods; - ab initio, AM1 and related semiempirical methods; - density functional theory (DFT). Topics are placed in a historical context, adding interest to them and removing much of their apparently arbitrary aspect. The large number of references, to all significant topics mentioned, should make this book useful not only to undergraduates but also to graduate students and academic and industrial researchers.




Concepts and Methods in Modern Theoretical Chemistry


Book Description

Concepts and Methods in Modern Theoretical Chemistry: Statistical Mechanics, the second book in a two-volume set, focuses on the dynamics of systems and phenomena. A new addition to the series Atoms, Molecules, and Clusters,this book offers chapters written by experts in their fields. It enables readers to learn how concepts from ab initioquantum chemistry and density functional theory (DFT) can be used to describe, understand, and predict chemical dynamics. This book covers a wide range of subjects, including discussions on the following topics: Time-dependent DFT Quantum fluid dynamics (QFD) Photodynamic control, nonlinear dynamics, and quantum hydrodynamics Molecules in a laser field, charge carrier mobility, and excitation energy transfer Mechanisms of chemical reactions Nucleation, quantum Brownian motion, and the third law of thermodynamics Transport properties of binary mixtures Although most of the chapters are written at a level that is accessible to a senior graduate student, experienced researchers will also find interesting new insights in these experts' perspectives. This book provides an invaluable resource toward understanding the whole gamut of atoms, molecules, and clusters.




Modern Quantum Chemistry


Book Description

This graduate-level text explains the modern in-depth approaches to the calculation of electronic structure and the properties of molecules. Largely self-contained, it features more than 150 exercises. 1989 edition.




Essentials of Computational Chemistry


Book Description

Essentials of Computational Chemistry provides a balanced introduction to this dynamic subject. Suitable for both experimentalists and theorists, a wide range of samples and applications are included drawn from all key areas. The book carefully leads the reader thorough the necessary equations providing information explanations and reasoning where necessary and firmly placing each equation in context.




Relativistic Quantum Chemistry


Book Description

Written by two researchers in the field, this book is a reference to explain the principles and fundamentals in a self-contained, complete and consistent way. Much attention is paid to the didactical value, with the chapters interconnected and based on each other. From the contents: * Fundamentals * Relativistic Theory of a Free Electron: Diracï¿1⁄2s Equation * Dirac Theory of a Single Electron in a Central Potential * Many-Electron Theory I: Quantum Electrodynamics * Many-Electron Theory II: Dirac-Hartree-Fock Theory * Elimination of the Small Component * Unitary Transformation Schemes * Relativistic Density Functional Theory * Physical Observables and Molecular Properties * Interpretive Approach to Relativistic Quantum Chemistry From beginning to end, the authors deduce all the concepts and rules, such that readers are able to understand the fundamentals and principles behind the theory. Essential reading for theoretical chemists and physicists.




Principles and Applications of Quantum Chemistry


Book Description

Principles and Applications of Quantum Chemistry offers clear and simple coverage based on the author's extensive teaching at advanced universities around the globe. Where needed, derivations are detailed in an easy-to-follow manner so that you will understand the physical and mathematical aspects of quantum chemistry and molecular electronic structure. Building on this foundation, this book then explores applications, using illustrative examples to demonstrate the use of quantum chemical tools in research problems. Each chapter also uses innovative problems and bibliographic references to guide you, and throughout the book chapters cover important advances in the field including: Density functional theory (DFT) and time-dependent DFT (TD-DFT), characterization of chemical reactions, prediction of molecular geometry, molecular electrostatic potential, and quantum theory of atoms in molecules. - Simplified mathematical content and derivations for reader understanding - Useful overview of advances in the field such as Density Functional Theory (DFT) and Time-Dependent DFT (TD-DFT) - Accessible level for students and researchers interested in the use of quantum chemistry tools