Privileged Scaffolds in Medicinal Chemistry


Book Description

This book addresses the various classes of privileged scaffolds and covers the history of their discovery and use.




Privileged Scaffolds in Medicinal Chemistry


Book Description

One strategy to expedite the discovery of new drugs, a process that is somewhat slow and serendipitous, is the identification and use of privileged scaffolds. This book covers the history of the discovery and use of privileged scaffolds and addresses the various classes of these important molecular fragments. The first of the benzodiazepines, a class of drugs that is powerful for treating anxiety, may not have been discovered had it not been for a chance experiment on the contents of a discarded flask found during a lab clean-up. Some years later, scientists discovered that benzodiazepine derivatives were also effective in treating other diseases. This class of molecules was the first to be described as privileged in the sense that it is especially effective at altering the course of disease. Other privileged molecular structures have since been discovered, and since these compounds are so effective at interacting with numerous classes of proteins, they may be an effective starting point to look for new drugs against the supposedly “undruggable” proteins. Following introductory chapters presenting an overview, a historical perspective and the theoretical background and findings, main chapters describe the structure of privileged structures in turn and discuss major drug classes associated with them and their syntheses. This book provides comprehensive coverage of the subject through chapters contributed by expert authors from both academia and industry and will be an excellent reference source for medicinal chemists of a range of disciplines and experiences.




Privileged Structures in Drug Discovery


Book Description

A comprehensive guide to privileged structures and their application in the discovery of new drugs The use of privileged structures is a viable strategy in the discovery of new medicines at the lead optimization stages of the drug discovery process. Privileged Structures in Drug Discovery offers a comprehensive text that reviews privileged structures from the point of view of medicinal chemistry and contains the synthetic routes to these structures. In this text, the author—a noted expert in the field—includes an historical perspective on the topic, presents a practical compendium to privileged structures, and offers an informed perspective on the future direction for the field. The book describes the up-to-date and state-of-the-art methods of organic synthesis that describe the use of privileged structures that are of most interest. Chapters included information on benzodiazepines, 1,4-dihydropyridines, biaryls, 4-(hetero)arylpiperidines, spiropiperidines, 2-aminopyrimidines, 2-aminothiazoles, 2-(hetero)arylindoles, tetrahydroisoquinolines, 2,2-dimethylbenzopyrans, hydroxamates, and bicyclic pyridines containing ring-junction nitrogen as privileged scaffolds in medicinal chemistry. Numerous, illustrative case studies document the current use of the privileged structures in the discovery of drugs. This important volume: Describes the drug compounds that have successfully made it to the marketplace and the chemistry associated with them Offers the experience from an author who has worked in many therapeutic areas of medicinal chemistry Details many of the recent developments in organic chemistry that prepare target molecules Includes a wealth of medicinal chemistry case studies that clearly illustrate the use of privileged structures Designed for use by industrial medicinal chemists and process chemists, academic organic and medicinal chemists, as well as chemistry students and faculty, Privileged Structures in Drug Discovery offers a current guide to organic synthesis methods to access the privileged structures of interest, and contains medicinal chemistry case studies that document their application.




Scaffold Hopping in Medicinal Chemistry


Book Description

This first systematic treatment of the concept and practice of scaffold hopping shows the tricks of the trade and provides invaluable guidance for the reader's own projects. The first section serves as an introduction to the topic by describing the concept of scaffolds, their discovery, diversity and representation, and their importance for finding new chemical entities. The following part describes the most common tools and methods for scaffold hopping, whether topological, shape-based or structure-based. Methods such as CATS, Feature Trees, Feature Point Pharmacophores (FEPOPS), and SkelGen are discussed among many others. The final part contains three fully documented real-world examples of successful drug development projects by scaffold hopping that illustrate the benefits of the approach for medicinal chemistry. While most of the case studies are taken from medicinal chemistry, chemical and structural biologists will also benefit greatly from the insights presented here.




The Ups and Downs in Drug Design


Book Description

The Ups and Downs in Drug Design: Adventures in Medicinal Chemistry highlights the necessity for an integrative approach in medicinal chemistry and chemical biology. As medicinal chemistry is not a monolithic science, it is important to emphasize the other various disciplines that are required for successful drug design. This book presents the author’s own personal experience in this field and describes the "ups" and "downs" that come with drug discovery. It is an excellent companion text for graduate and postgraduate students who would like further insight into the parameters of drug design, including the challenges that come with the project. Key Features Illustrates "real-life" examples in medicinal chemistry Integrates the use of physical, chemical, and biological concepts that are important in drug design Highlights the "ups" and "downs" that come with drug discovery Aims to inspire students who may be struggling with the challenges and thought process in drug design Intends to be an excellent companion text for graduate and postgraduate students




Key Heterocycle Cores for Designing Multitargeting Molecules


Book Description

Key Heterocycle Cores for Designing Multitargeting Molecules provides a helpful overview of current developments in the field. Following a detailed introduction to the manipulation of heterocycle cores for the development of dual or multitargeting molecules, the book goes on to describe specific examples of such developments, focusing on compounds such as Benzimidazole, Acridine, Flavones, Thiazolidinedione and Oxazoline. Drawing on the latest developments in the field, this volume provides a valuable guide to current approaches in the design and development of molecules capable of acting on multiple targets. Adapting the heterocyclic core of a single-target molecule can facilitate its development into an agent capable of acting on multiple targets. Such multi-targeting drugs have the potential to become essential components in the design of novel, holistic treatment plans for complex diseases, making the design of such active agents an increasingly important area of research. - Emphasizes the chemical development of heterocyclic nuclei, from single to multitargeting molecules - Provides chapter-by-chapter coverage of the key heterocyclic compounds used in synthesizing multitargeting agents - Outlines current trends and future developments in multitarget molecule design for the treatment of various diseases




Diversity Oriented Synthesis


Book Description

Has the concept of Diversity Oriented Synthesis remained unchanged over these two decades, or do we observe improvements or deviations from the original guidelines drawn by the pioneers? The aim of this Research Topic is to collect contributions on the state-of-the-art and progress of Diversity Oriented Synthesis, and to foresee its shape in the next decade.




Peptidomimetics in Organic and Medicinal Chemistry


Book Description

A peptidomimetic is a small protein-like chain designed to mimic a peptide with adjusted molecular properties such as enhanced stability or biological activity. It is a very powerful approach for the generation of small-molecule-based drugs as enzyme inhibitors or receptor ligands. Peptidomimetics in Organic and Medicinal Chemistry outlines the concepts and synthetic strategies underlying the building of bioactive compounds of a peptidomimetic nature. Topics covered include the chemistry of unnatural amino acids, peptide- and scaffold-based peptidomimetics, amino acid-side chain isosteres, backbone isosteres, dipeptide isosteres, beta-turn peptidomimetics, proline-mimetics as turn inducers, cyclic scaffolds, amino acid surrogates, and scaffolds for combinatorial chemistry of peptidomimetics. Case studies in the hit-to-lead process, such as the development of integrin ligands and thrombin inhibitors, illustrate the successful application of peptidomimetics in drug discovery.




Small Molecule Drug Discovery


Book Description

Small Molecule Drug Discovery: Methods, Molecules and Applications presents the methods used to identify bioactive small molecules, synthetic strategies and techniques to produce novel chemical entities and small molecule libraries, chemoinformatics to characterize and enumerate chemical libraries, and screening methods, including biophysical techniques, virtual screening and phenotypic screening. The second part of the book gives an overview of privileged cyclic small molecules and major classes of natural product-derived small molecules, including carbohydrate-derived compounds, peptides and peptidomimetics, and alkaloid-inspired compounds. The last section comprises an exciting collection of selected case studies on drug discovery enabled by small molecules in the fields of cancer research, CNS diseases and infectious diseases. The discovery of novel molecular entities capable of specific interactions represents a significant challenge in early drug discovery. Small molecules are low molecular weight organic compounds that include natural products and metabolites, as well as drugs and other xenobiotics. When the biological target is well defined and understood, the rational design of small molecule ligands is possible. Alternatively, small molecule libraries are being used for unbiased assays for complex diseases where a target is unknown or multiple factors contribute to a disease pathology. - Outlines modern concepts and synthetic strategies underlying the building of small molecules and their chemical libraries useful for drug discovery - Provides modern biophysical methods to screening small molecule libraries, including high-throughput screening, small molecule microarrays, phenotypic screening and chemical genetics - Presents the most advanced chemoinformatics tools to characterize the structural features of small molecule libraries in terms of chemical diversity and complexity, also including the application of virtual screening approaches - Gives an overview of structural features and classification of natural product-derived small molecules, including carbohydrate derivatives, peptides and peptidomimetics, and alkaloid-inspired small molecules




Natural Products in Medicinal Chemistry


Book Description

The inspiration provided by biologically active natural products to conceive of hybrids, congeners, analogs and unnatural variants is discussed by experts in the field in 16 highly informative chapters. Using well-documented studies over the past decade, this timely monograph demonstrates the current importance and future potential of natural products as starting points for the development of new drugs with improved properties over their progenitors. The examples are chosen so as to represent a wide range of natural products with therapeutic relevance among others, as anticancer agents, antimicrobials, antifungals, antisense nucleosides, antidiabetics, and analgesics. From the content: * Part I: Natural Products as Sources of Potential Drugs and Systematic Compound Collections * Part II: From Marketed Drugs to Designed Analogs and Clinical Candidates * Part III: Natural Products as an Incentive for Enabling Technologies * Part IV: Natural Products as Pharmacological Tools * Part V: Nature: The Provider, the Enticer, and the Healer